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Anti-duality for Cooperative Game Theory and Its
Applications to Population Monotonicity

Takayuki OISHI*

We demonstrate that the notion of anti-duality, proposed by Oishi et al. (2015) and Oishi

(2015), is highly useful for analyzing a new monotonic property for single-valued solutions for

coalitional games with transferable utility (i.e. TU games). First, we propose a new monotonic

property derived from the anti-dual of population monotonicity. This new property, referred to as

coalitional contribution monotonicity, says that if the contribution of agents to a particular coali-

tion to which they do not belong makes the coalitional worth for the agents in a new game, then

they weakly gain in this game. Using the notion of anti-duality, we offer sufficient conditions un-

der which coalitional contribution monotonicity is satisfied by a single-valued solution on the do-

main of convex games. Finally, we show that on the domain of all TU games, no single-

valued solution satisfies efficiency and coalitional contribution monotonicity.

1 Introduction

Recently, Oishi et al. (2015) proposed an analytical
framework for axiomatizations of solutions for
coalitional games with transferable utility (TU
games, for short). This framework is referred to as
the “anti-duality approach”. Using this framework,
Oishi et al. (2015) provided new axiomatizations of
the core (Gilles 1959) on the domain of balanced
TU games, and of the Shapley value (Shapley
1953) on the domain of all TU games. The core
and the Shapley value are main solutions for coop-
erative game theory, and they have many economic
applications. Using the anti-duality approach, Oishi
(2015) axiomatized some allocation rules for vari-
ous economics problems. In these senses, the anti-
duality approach is highly useful for characterizing
both solutions for TU games and allocation rules
for economics problems.

The purpose of this paper is to demonstrate that
the anti-duality approach is wuseful for another
game-theoretic analysis as well. For this purpose,
we will focus on “population monotonicity” in co-

operative game theory, and apply the notion of

anti-duality to analyzing a new monotonic property
that is the anti-dual of population monotonicity.
Population monotonicity, originally proposed by
Thomson (1983) in bargaining theory, says that if
new agents arrive, the payoffs to agents that are
present initially have to increase. Population
monotonicity is known as an important property for
axiomatic analysis in the situation where the number
of agents is variable. For the detail of population
monotonicity, see Thomson and Lensberg (1989).
Our results are summarized as follows: First, we
derive a new monotonic property as the anti-dual
of population monotonicity. A new monotonicity
we propose says that if the contribution of agents
to a particular coalition to which they do not be-
long makes the coalitional worth for the agents in
a new game, then they weakly gain in this game.
We refer to it as  coalitional contribution
Hokari and Gellekom (2002) pro-

vided us with sufficient conditions for a single-

monotonicity” .

valued solution to be population monotonic on the
domain of convex games. Using the anti-duality
approach, we derive suffcient conditions for a single-

valued solution to be coalitional contribution
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monotonic on the domain of convex games from
Hokari and Gellekom's conditions. Finally, we
show that on the domain of all TU games no-
single valued solution satisfies efficiency and
coalitional contribution monotonicity. We derive the
anti-dual result of this impossibility theorem: On
the domain of all TU gems, no-single valued solu-
tion satisfies efficiency and population
monotonicity.

The rest of this paper is organized as follows.
Following Oishi et al. (2015) and Oishi (2015), in
Section 2, we explain the notion of anti-duality for
cooperative game theory. In Section 3, we intro-
duce coalitional contribution monotonicity. On the
domain of convex games, we offer sufficient condi-
which

monotonicity is satisfied by a singlevalued solution.

tions  under coalitional  contribution
In Section 4, we show the impossibility theorem

concerning coalitional contribution monotonicity.

2 Preliminaries

Following Oishi (2015) and Oishi et al. (2015), we
explain the notion of anti-duality for solutions and
axioms for cooperative game theory. There is a
universe of potential agents, denoted Z CN, where
N is the set of natural numbers.' Let A be the class
of non-empty and finite subsets of Z, and N € N/.
A coalitional game with transferable utility for
N (a TU game for N , for short) is a function
v: 2Y — R with v(@) = 0. For all S € 2V, v(S) rep-
resents what coalition S can achieve on its own.
Let VY be the class of TU games for N , and
V= Uyen VN

Given a TU game v for N and N' C N, the
subgame of v relative to N, denoted v|y, , is
defined by setting, for all S €2V vy (S) = v(S).
A TU game v for Nis convex if for all 4 € N and
all §; T C N\{i}, S C T'implies v(S U {i}) — v(S)
< u(TU{i})—o(T). Let VN_ be the class of

vex

convex games for N, and Vi, = Uy V. A

cx

TU game v for N is balanced if for all non-

negative function 6 : 2V — R, such that for all i€
N, 355:6(8) =1, v(N) 2 3 geov 6(S)0(S). A con-
vex game is balanced.

Let RM denote the Cartesian product of [N |
copies of R, indexed by the members of N. A
payoff vector for N is an element = of RY. For all
z€RY and all S€2V, let zg5= (7i)ics - A solu-
tion, denoted ¢, is a mapping, defined on some
domain of games, that associates with each game
in the domain a nonempty set of payoff vectors. A
solution is single-valued if it associates with each
game in its domain a unique payoff vector.

Given a game v for IV, the dual of v, denoted
v? | is defned by setting, for all SC N,

v3(8) = v(N) — v(N\S).

The number v?(S) is the amount that the comple-
mentary coalition N\S cannot prevent S from ob-
taining.

Let V be a class of games such that if veV,
then v? € V. Given a solution ¢ on V, the dual
of ¢ , denoted p¢, is defined by setting, for all
veEV,

p'(v) = p(v?).

A solution ¢ on V is self-dual if for all v €V, p(v)
= ¢%(v).
An axiom is a desirable property of solutions. Two
axioms are dual of each other if whenever a so-
lution satisfies one of them, the dual of this solu-
tion satisfies the other. An axiom is self-dual if it
is its own dual.

Given a game v for N, the anti-dual of v, de-
noted v2¢, is defined by setting, for all SC N,

v¥(8) = —v?(5).2

Let V be a class of games such that if v € V', then
v®@eV . The class of balanced games and the class
of convex games satisfy this property. Given a so-
lution ¢ on V, the anti-dual of ¢, denoted ¢,
is defined by setting, for all vE€V,

() = —p(v™).



A solution ¢ on V is self-anti-dual if for all v € V,
p(v) = ¢*(v). Two axioms are anti-dual of
each other if whenever a solution satisfies one of
them, the anti-dual of this solution satisfies the
other. An axiom is self-anti-dual if it is its own
anti-dual.

Finally, we introduce well-known solutions for
coalitional games. The core (Gillies 1959) is de-
fined as follows: for all N € N and all v € VN,

Cw) = {J; eRrRY ‘ Zm, =v(N) and for all SC N,

iEN
Zz‘i > v(S)},
€S
The core of v for N is not empty if and only if
the game v is balanced.

The Shapley value (Shapley 1953) is defined as
follows: for all Ne N, allv € VYV, and all i€ N,
sm(v) = 3 BHE LA =R s u ) - s

i |
On the domain of convex games, the core is never
empty, and the Shapley value is a selection from
the core.

Given N € N and v € VN, let I(v) be the set of
vectors z€RY such that for all i € N, z; > v({i}),
and Y yz; = v(N) For all zel(v), let e(v,z) €
R?" be defined by setting, for all SC N , es(v, )
=v(S)— Ygx. For all ze R, 6(z) e R is
defined by rearranging the coordinates of z in non-
increasing order. For all z € R, z is lexicographi-
cally smaller than 2" if 6,(z) < 0:(2") or [6;(2)
= 601(2") and 6i(z) < 02(2")] or [6:1(z) = 6:1(2") and
02(2) = 02(2") and 65(z) < 63(2')], and so on. The
nucleolus (Schmeidler 1969) is defined as follows:

Nu(v) =

{x € 1(v) ‘ For all y € I(v)\{z}, e(v, ) is

lexicographically smaller than e(v,y)
The nucleolus is a single-valued solution. On the

domain of comvex games, the nucleolus is a selec-

tion form the core.

3 Anti-duality approach to

population monotonicity

In this section, we deal with a single-valued solu-
tion, denoted ¢ , on some domain of games. We
write z = p(v) instead of {z} = ¢(v) .

Let us consider the well-known monotonic prop-
erty in cooperative game theory, population
monotonicity (Thomson 1983; Sprumont 1990). This
monotonic property says that for all game v € V¥
and all subgames v|n» € VV', if agents play in  v|n-,
then the payoffs to the agents in v have to in-
crease. Formally, this property is as follows:
Population monotonicity: For all N, N’ € N such
that N'C N, all v€ VN and all i€ N, g;(v|n) <
@i(v).

Let us introduce the following monotonic prop-
erty. An interpretation of this property is as fol-
lows: We start with some game v for N € N. Next,
we consider the game v° played by N C N. It is
meant to describe the situation where the worth of
each coalition S C N’ is equal to the contribution
of S to N\N"in v. This property says that in the
game v¢, the payoffs to the members of N’ have
to be at least as large as in v . Note that v¢ is not
vl .

Coalitional contribution monotonicity: For all
N, N € N such that N'c N, all ve VN  all
v € V¥ such that for all § € N’ v%(S) = v(SU

(N\N")) —v(N\N"), and all i € N,
©;(v°) > ¢;(v).

The following claim says that v® is convex on the
domain of convex games.
Claim 1 For all N, N' € N such that N' C N, all
ve VN and all SCN',

v°(S) = v(S U (N\N")) — v(N\N").
Then,
v° € V,ﬁ;

Proof. A game is convex if for all S,T C N,
v(S)+v(T) < v(SUT)+v(SNT) For all S, T C N’,



v¥(S) +v°(T)
—0(SUN\N')~o(N\N') + o(TU(N\N')) ~u(N\N')
<o ((SUN\N)UTUN\N') ~u(N\N')

0 (SUN\N)ATU(N\N')) —o(N\N')
—v ((SUT)U(N\N')) ~u(N\N')

+u ((SNT)U(N\N') —v(N\N')

=v*(SUT)+v°(SNT),

the desired conclusion. H
The class of convex games is closed under the
anti-duality operator, but not under the duality op-
erator.” Using the anti-duality operator, we obtain
the following result:
Proposition 1 On the domain of convex games,
population monotonicity and coalitional contribu-
tion monotonicity are anti-dual of each other.
Proof. Let ¢ be a population monotonic solution
on VN . Let ve VN , z=¢%w) and y =
©®(v|y) .* For all S C N, w(S) = v*|n(S) . By
the definition of ¢ ,—z = pp, (v*?) and —y = p(w).
Note that v* € VY and we VY

ex - Since ¢ is

ei(w) <
¢;(v*) . By the definition of ¢**, for all i € N’,
et (W) = pi(v).

For all $ C N’,

population monotonic, for all i€ N,

w(S) = —w(N')+w(N'\S)
= vIn(N) = 0’| (N'\S)
= v(N) = o(N\N') = v(N) + v(N\(N'\9))
= o(SU(N\N')) —v(N\N),

the desired conclusion. M

The followings are well-known properties of
single-valued solutions (e.g., Peleg and Sudholter
2003):
Efficiency:For all N € NV, and all v € VN, >\ ¢;(v)
=o(N) .
Individual rationality: For all N ¢ A/, all v € V¥,
and all i € N, ¢;(v)>v({i})-
Reasonableness: For all N e A/, all
all i € N, ¢;(v) <v(N) —v(N\{}).”

ve VY, and

Lemma 1 On the domain of convex games, (i)
efficiency is self-anti-dual, and (ii) individual ra-
tionality and reasonableness are anti-dual of each
other.
Proof. Immediately from the definition of anti-
duality.

For all N, N'CN such that N’ C N, and all
v € VN the self-reduced game of v relative to
¢ and N’, denoted r%,(v), is defined by setting,
for all S C N’,

e (V)(8)=

v(N) — EN\N/ w;(v)
v (S U(N\N)) = e 230 sy ) i S #N7 0,
0 if $=0.

itS=N

Consider the following property associated with
self-reduced games:
Self consistency: For all N, N' € NV such that N’
CN and all ve VY, we have r%,(v) € V¥ and
for all i€ N", ¢;(r%/(v)) = ¢;(v).
and Mas-Colell 1989)

reguires that the outcome a solution chooses for

Self' consistency (Hart

each game in VN should be equal to the outcome
chosen by the solution for the self-reduced game
relative to ¢ and N'°

On the domain of all TU games, the Shapley
value is self consistent. However, on the domain of
convex games, it is not, since V. 1s not closed
under the self-reduction operator for this solution.

The following notion is a weaker notion:
Bilateral self-consistency: For all N, N’ € N such
that N’ C N with |N’|=2, and all v € VN, we have
r%(v) € VY and for all i € N', ¢;(rf.(v)) = ¢;(v) .
On the domain of convex games, the Shapley value
is bilaterally self-consistent.

Let us consider the following alternative notion
of consistency, introduced by Oishi et al. (2015).
Transfer agreement consistency (Oishi et al.
2015): For all N, N'€N such that N ' C N ,
and all ve VYN | if for all SC N’ ,

e (0)(S)



v(N) — EN\N/ @;(v) itS=N,
v(S) + ZN\N’ %‘(UN\S) - ZN\N’ py(v) if S # N0,
0 ifS=0,
MS is the game for N\S defned by
setting, for all 7'C N\S,v™\5(T) =v(SUT) — v(S),
we have 7%,(v) € VN and for all i € N’, ¢,(7%,(v))
=p;(v) .

The following notion weakens transfer agree-

where v

ment consistency by limiting its application to
subpopulation of two agents:

Bilateral transfer-agreement consistency: For all
N, N’ e Nsuch that N’ C N with |N’| = 2, and
all ve VY we have 7%, (v) € VN and for all ie N’
@73 (v)) = ¢(v).

Bilateral transfer-agreement consistency can be
described as follows: Let N € N and N'={i,j}
with 4 # 7. The games v™M& and ™} are given
by setting,
for all T C N\{i}, v™\HT)=v({i}uT)—v({i});
for all T C N\{j}, o™\NT) = o({j3 UT) —v({;j})-

Then, 7%, is given by
R @){i}) = v({i}) + Taw [ex (™) — @i (v)]
@7 = v({GH) + T [N — g (v)]

FR(W)N') = v(N) = 3 p\ e i (v)-

The scenario underlying the reduced game 7%, is
as follows. The scenario here is proposed by Oishi
et al. (2015).

Imagine that agent ¢ announces that he will co-
operate with anybody if he obtains v({i}). If some
agents, who form a coalition T C N\{:}
the coalition {¢} U T obtains v({i}
U T). Since the reward of agent ¢ for his coopera-
tion is wv({i}),
der v({i}UT)—ov({i}). Thus, the agents except for

, cooper-

ate with agent
the coalition T obtains the remain-

agent 7 play ™M@ and obtain @(v¥\M#). If agent
% does not make this announcement, the agents ex-
cept for agent i obtain ¢(v). If agents < and k €
N\N'" agree that the difference ¢, (v¥\) — @, (v)
should be transferred from agent k& to agent %, then

agent ¢ obtains 7%,(v)({i¢})as defined above. The

worth 7%,(v)({j}) can be interpreted in the same
manner.

Bilateral transfer-agreement consistency reguires
that what agents ¢ and 7 get should be unchanged
even if such an agreement between agents 7 and
k€ N\N’ or between agents j and k€ N\N' is
taken place.

Proposition 2 On the domain of convex games, bi-
lateral  self-consistency and bilateral transfer-
agreement consistency are anti-dual of each other.
Proof. Let ¢ be a single-valued solution on Vi,
that satisfies bilateral self-consistency. Let N € N,
v be a convex game for N , and z = ¢®(v) . By
,z=—p(—v%) . Let NNC N
2, and w € R?" be such that for all

the definition of ¢
with |N'| =
N,
w(S)=

—vd(N)+Zi€N\N, Zj if S =N,
—vt (SU(N\N/))_ZiEN\N’ Pi (—Ud |SU(N\N’)) if $# N0,

0 it §=0.

Since ¢ satisfes bilateral self-consistency, w € VX,
and zn' = —p(w) . Again by the defnition of ¢*?
TN = (pud(—wd) )

First, we have

—w(N") = v4(N) — Z z; =v(N Z 0 ().
iEN\N' IEN\N'
Next, for all SC N with S#0,
w(S) =—v* (SUN\N) = > ¢, (= [sumny)
iEN\N’
—v(N)+v (N'\S) - Z ©; (_Ud|SU(N\N')) .
IEN\N'

Thus, for all S c N* with S # 0, we have
—ut(5)=

=v(N)— Y i —v(N)+v(N\(N\S))

iEN\N'

- w-

IEN\N

= — Z :cH—v(S)—

IEN\N'

—w(N') + w(N'\S)

v I(N’\S)U(N\N’))
Z Pi (_“d ‘N\S) )
iEN\N'

so that

)+ > et (- (-

IEN\N'

Ud|N\S)d> - Z ().

IEN\N'



Note that for all T C N\S,

_Ud|N\s (T) = —vX(T) = —v(N) + v(N\T).

Thus, for all T C N\S,

~(ls) @) = (] DONS) ()
(N\S\T)
= o(N) — (N\(N\S)) — (V) +
o (N\((M\S\T)
— o(SUT) —(S)

= vM5(),

the desired conclusion. W

Hokari and Gellekom (2002) identified the fol-
lowing sufficient conditions for a single-valued so-
lution to be population monotonic on the domain
of convex games.

Proposition A (Hokari and Gellekom 2002) On the
domain of convex games, if a single-valued solu-
tion is efficient, individual rational, and bilaterally
selfconsistent, then it is population monotonic.
Corollary 1 On the domain of convex games, the
Shapley value is population monotonic (Sprumont
1990).

Using the anti-duality operator, we derive suffi-
cient conditions for a singlevalued solution to be
coalitional contribution monotonic on the domain
of convex games from Hokari and Gellekom's con-
ditions.

Proposition 3 (Anti-dual of Proposition A) On the
domain of convex games, if a single-valued solu-
tion is efficient, reasonable, and bilaterally transfer-
agreement  consistent, then it is coalitional
contribution monotonic.

Proof. By Propositions 1 and 2, and Lemma 1. B

On the domain of convex games Ve, the Shapley
value is self-anti-dual (Oishi and Nakayama 2009,
Theorem 2). On Ve, , it is efficient, reasonable,
and bilaterally transfer-agreement consistent. Thus,
the conditions stated in Proposition 3 are satisfied

by the Shapley value.

4 Further discussion: Impossibility results

Finally, let us consider an application of coalitional
contribution monotonicity.

One may wonder whether there is a solution satis-
fying efficiency and coalitional  contribution
monotonicity on the domain of all TU games. Un-
fortunately, we provide a negative answer for this
question:

Theorem 1 On the domain of all TU games, no
single-valued  solution  satisfies  efficiency and
coalitional contribution monotonicity.

Proof. Let VN be the class of all TU games for

N. Let ¢ be a solution on VN. Suppose that it
satisfies the two properties. For all N, N’ € N such
that N ¢ N all v € V" and all v¢ € VV' such that
for all § C N, v°(S) =v(SU(N\N")) —v(N\N').

By coalitional contribution monotonicity, for all

1€ N',
Z%‘(UC) = Z‘Pi(v)~
N’ N’
By efficiency,
D @) =v (V') =v(N)—v(N\N),
I
and
> i) =v(N).
N
Thus, for all N, N’ € N such that N’ C N,

D_wi(0) —u(N\N') 2 _oi(v)
N N’

which implies 3\ @;(v) > v(N\N') . Therefore,
for all ve VN, ¢(v)eC(v)
non-balanced game v € VN , (v) ¢ C(v), a contra-
diction.

Note that on the domain of all TU games, popu-

. However, for some

lation monotonicity and coalitional contribution
monotonicity are anti-dual of each other.” On this
domain, efficiency is self-anti-dual. We derive the
following impossibility theorem by applying the
notion of anti-duality to Theorem 1.

Theorem 2 (Anti-dual of Theorem 1) On the do-

main of all TU games, no single-valued solution



satisfies efficiency and population monotonicity.
Although Sprumont (1990) showed Theorem 2
without using the antiduality approach, we obtain
the same result using this approach.
Corollary 2 On the domain of convex games, if a
single-valued solution is efficient and population
monotonic, then it is a selection from the core.
On the domain of comvex games, the Shapley
value is efficient and population monotonic. So is
the Dutta-Ray solution (Dutta and Ray 1989). On
this domain, these solutions are selections from the
core. Although the nucleolus is a selection from
the core, it is not population monotonic on the do-
main (Sonmez 1994). Therefore, the necessary con-
dition stated in Corollary 2 is not sufficient for a
single-valued solution to be efficient and population
monotonic.
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Notes

1. We use € for weak set inclusion, and € for
strict set inclusion.

2. The notion of anti-dual games is initially intro-
duced by Oishi and Nakayama (2009).

3. Several important classes of TU games (such as
balanced TU games and convex TU games) are
not closed under the duality operator. For this
reason, applicability of the duality approach to
axiomatization of solutions is very limited. On
the other hand, both the class of balanced TU

games and that of convex TU games are closed

4. Note that % (v) = (2(v))

under the anti-duality operator. Therefore, the

anti-duality  approach is advantageous to
axiomatization of solutions. For the detail, see

Oishi et al. (2015).

iEN" *

5. On the domain of convex games, it is ‘reason

ableness from above” (Milnor 1952).

. Self-reduced game and self-reduced consistency

are usually called “HM-reduced game” and
“HM-consistency” , respectively. We use the

terminology introduced by Thomson (1996).

. The proof is the same as in Proposition 1.
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