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Many new globally convergent price adjustment process have been proposed in the last

40 years. The main strength of these approaches are their globally convergent characteristics

and also the possibility of their applications to a large-scale applied general equilibrium

model. In order to see the empirical applicability of these approaches, in this paper 1 con-

ducted seven numerical simulations of the simple illustrative model and compared their per-

formances. The best approach was the modified Kimbell-Harrison approach which achieved

a high computational precision with only 20 iterations to obtain the converged values.

1. Introduction

At the outset of its theoretical formulation
in the 1950s, the major criticism of the gen-
eral equilibrium framework was that it was
very intractable in dealing with multi-
dimensional empirical issues due to the lack
of effciently operational algorithms and
suffcient computational power. This criticism
was signicantly weakened with the first appli-
cations of the Johansen approach in the early
1960s (Johansen[4,1960] and Dixon, Parmenter,
and Powell [2, 1992]), and the Scarf approach
in the late 1960s and the early 1970s (Scarf
[8, 1967] and Scarf [9, 1973]). Subsequent re-
finements in operational algorithms have been
made, while at the same time computational
power has been considerably increased due to
advancements in computer technology. Thus,
the early criticism of general equilibrium
analysis no longer holds. The number of such
called

equilibrium models”

“applied general
called

empirical models,
(or sometimes

“computable general equilibrium model”) has
mushroomed in various fields of research in
the last 40 years.

Many new globally convergent price adjust-
ment processes have been proposed in the last
40 years. The main strengths of these ap-
proaches are their globally convergent charac-
teristics and the possibility of their
applications to a large-scale applied general
equilibrium model. In order to see the empiri-
cal applicability of some of these approaches,
in this paper I conducted numerical simula-
tions of the simple illustrative model and
compared the performances of traditional non-
linear solvers such as the Bisection method,
the Secant method, and the Traub method,
with four alternative approaches: the Scarf ap-
proach (Scarf [8, 1967], Scarf [9,1973],
Shoven and Whalley [11, 1992]), the Modified
Tanaka-Kawano approach (Tanaka and Kawano
[12, 1996]), the Modified Kimbell-Harrison

(Kimbell-Harrison [7, 1986] and
[7,2003]), and the Joosten and

approach
Kawano
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Talman approach [5, 1998:15-26]. The chal-
lenge for empirical application is to develop
an easily implementable algorithm which is
relatively fast and efficient in computing in
high precision. The computational example for
this paper was drawn from Washida [14,
2004: pp. 256-7] who provided the ideal
structure for testing the numerical reliability
of each approach. Washida [14, 2004: pp.
244-9 and pp. 256-67] also provided his pro-
gram and an excellent exposition of the Scarf
algorithm.

As a result of the simulation exercise, the
best approach was the modified Kimbell-
Harrison approach which achieved a high
computational precision with only 20 itera-
tions to obtain the converged values. I applied
the method to the example drawn from
Shoven and Whalley [10, 1974]. In Kawano
[6, 2003: 2-27.], the number of iterations was
409 over the Scarf's algorithm, which Shoven
and Whalley used to solve the same problem
with 1653 iterations. The Joosten-Talman ap-
proach also achieved a high precision with
just 30 The modified Tanaka-
Kawano approach achieved a high precision,

iterations.

but after 178 iterations. The Scarf approach
performed poorly and did not achieve a high
precision with over 1 million iterations, even
though its computational time was 0.142 sec-
onds which is comparatively long." The other
approaches of the traditional non-linear solvers
such as the Bisection and the Traub methods
took less than 0.001 second to converge, and
performed well, but the Secant performed
poorly and did not achieve a high precision
with five thousands iterations. These experi-
ments were programmed in C-language, and
conducted on the GCC version 4.0.1 compiler
(Apple Computer, Inc.). The verified reliabil-
ity of the simulation results in double preci-
sion (1.0e-15).
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In section 2, the general structure of the
model is specified. In section 3, the seven al-
ternative approaches are described. In section
4, the simulation results are summarized. The
conclusion follows in section 5. The complete
computer output is presented in the Appendix.

'The same C program was run 15 years ago. It took
1.987 seconds with Intel's 333MHz Pentium II processor
to run the program.

2. Model Structure

The model is a simple competitive pure ex-
change economy with 3 commodities indexed
i r.l =
o
vectors isHt [0,

{1,243} and two consumers indexed.
[1.2}. The set of all possible price
where # = {r = B¥ |z, =
% ;= 'y Each consumer i = i*is character-
ized by his consumption set X', initial endow-
ments ., and preference relation ='with the

following 3 assumptions:

Assumption 1: The consumption set X*is closed
and nonempty, and it is a convex subset of
! bounded below and unbounded above,
containing the set -Il-r eRIN0S xS Tp o
W3 e P where wf = (u), wi, wil is the vector
of initial endowments of the 3 commodities

1= I of consumer i = [,

of the 3
Iof consumeri = I* is strictly

Assumption 2: Each endowment
commodities 1

positive, w! =0, Wie I¥, ye It

Assumption 3: The preference ='relation which
is quasi-ordering on X', is continuous, weekly

monotonic, and strictly convex.

Let B'ip) = {x € X¥|pTe < pTw'} denote
the budget set of consumeri = I* given price
vector p & W1 {1}, By assumption, each



consumer i = ¥ maximizes his utility function
Under
through 3, the solution of each consumer's maxi-

over his budget set. Assumptions 1
mization problem is unique and also satisfies the
budget constraint with equality: p* o' (i} = p' ',
for each consumeri = i*for everym £ i {0}
The derived demand function of each con-
sumer i = F?denoted by df(p) : R\ {0%) — ®*
is continuous. The excess demand function

z*{p) of consumeri = i?is defined as: zf[p] =

'(p) = o, for every p £ ®H1{0"* '}, Then,
pT2%p) =0 for every p & ®L\{ir}. The ag-
gregate excess demand function z = %4 {0}

—+ R4 defined as:z{p) = 3. p #'(p), for every
p e R0} is a continuous function with
the following properties:

Property 1: p zip)=0, ¥ pe B {0%) (Strong
form of Walras' law).

If every consumer is locally nonsatiated,
then consumers spend all of their wealth on
consumption. This results in p' ={pi=0 for
every price p.”

*See Ellickson [1, 1993: 236-237] for the proof in detail.

Property 2: ={p} = (), whenever pi; =0 (desir-
ability).

In this case, if some price is zero, the ag-
gregate excess demand for the commodity is
strictly positive. If all commodities are desir-
able and p*is a Walrasian equilibrium, then
2(p*}=0. This implies the equality of demand
and supply of commodities at their equilib-

rium prices.

Property 3: z{u -« p) = z|p), ¥acalarsp >
0, 7p = B 0%} (homogeneity of  degree
zero in prices).

Note that homogeneity of degree zero in
prices allows normalization of the price space
to the n-dimensional unit simplex. Therefore

the analysis of aggregate excess demand

functions is restricted to the normalized price
space formed by the unit simplex. The n-
dimensional unit simplex S” is defined by:

41
EP={pec R Zpr =1

i=1

In this example, »=2. An equilibrium price
vector is a price vector denoted by p* ¢ &7,
where aggregate excess demand function
z(p*)= 0" holds for each commodity. It is
well-known that such an equilibrium price
vector p* always exists on the n-dimensional
unit simplex satisfying =(p*]= 0+l

In this model structure, the economy
o= (A", 2" w')zr)) is such that for the
consumption set X**!* = ® Each consumer's
preference relations = and —* are represented
by utility functions w' : X7 — & aud o : X
— ®, respectively, defined by

W) = ()PS0t oy el e 2

{J.f.:l:l -II:Ii]Il.jl:.l"?::l"'ﬂ, o J_:! = -E_'_

u{x)

The vectors of initial endowments of the 3

commodities i & 1™ of consumeri & [*are given

as:
W = fudwd )T = (40, 20,30)7,
wh = (uf,um.en ) = (20,30,40)°,
E“-* (60, 50, 7007,

Each consumer's income denoted by
¥'=plw! Wie I* is given as follows:

1|-': = -lIII[.I] + 2”;[.13 T :H_I‘II'.',\'_I...

¥? = 20p + 30ps + 40ps,
This example is taken from Washida [14,
2004, pp. 256-7]. As a result of each con-

sumer's utility maximization, the
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corresponding demand functions for consumer
i€ I? are denoted by d*(p). ¥i € I? as:

l:'rn ooy nayin T
mooP
] ‘05T 0av? ngris T
||r'l|rl = [ - bt = ]

dlip o @ T )

o e B -:II'|.

It is also easily verified that for every con-
sumer i € fo, ', ¥i £ I, is a continuous
function. The Walrasian equilibrium price sys-
tems are given by the solutions p*= H5 '\ {07}
of the system of equations of the aggregate

demand function z{p] : ;ﬁ"‘, P = R/ as:

zip) = Z&"'I,;?'I - Z.‘..."' = [},

=i =
Rewrite the above equation in matrix form as:

0.3y 1 il
P I

eayt | g | ey
M Pz

110 B3y 2 70

] L]

— |50 =W

A Walrasian equilibrium price system
{15 #4517 satisfying the condition E?_Lf{.
= 1 is numerically computed (by the seven
alternative approaches chosen in this paper) if
and only if p*e FBLV0F]
Walrasian equilibrium price vector y*is given
by:

The unique

p* = {0.396791, 0.30187, 0.301333)7

The computational results for seven alternative
approaches are presented in the Appendix. All
assumptions made are satisfied by this econ-
omy &.

3. Descriptions of the Seven Alternative
Approaches

In this section, the seven algorithms applied
to compute the benchmark model in Section 2
are briefly described as follows:
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1. Scarf Approach (program: scarf3.c):
This approach was first introduced by Scarf
[8, 1967], and the exposition follows Shoven
and Whalley [11, 1992:40-1.]. To find such a
fixed point, the unit simplex is divided into a
finite number of smaller simplices, each de-
fined by N vertices that are each associated
with a label. These labels are chosen from the
set of integers that defined the dimensionality
of the general equilibrium problem (if Nis the
dimensionality of the problem). The labels are
chosen in such a way that if a simplex can
be found whose vertices have a complete set
of labels (from I to N) associated with them,
then this implies that a close approximation to
a general equilibrium must have been found.
The operational program used in this paper
was developed by Washida [14,2004:256-7]
and modified for the implementation.

2. Modified Kimbell-Harrison Approach
(program: wsd-1.c): This approach was de-
veloped by Kimbell and Harrison [7,
1986:197-212.] and extended by Kawano [6,
2003:2-27.].

prices over iterations is to increase prices for

The crucial step for revising

all the excess demands and to lower all the
excess supplies simultaneously. This Walrasian
tatonnament process was simply formulated in
the program as: Fn+1 = B [ /5],

where D:= excess demand and S:= excess
supply.

3. Joosten-Talman Approach (program:
wsd-3.c): This approach was developed by
Joosten and Talman [5, 1998:15-26.]. The
purpose of the paper was to introduce a new
globally convergent price adjustment process.
Under the price adjustment process, only the
prices of commodities having the highest ex-
cess demand are increased from their initial
levels. At the same time, only the prices of



commodities having the lowest excess de-
mand are decreased from their initial levels.
This process was easily programmed for op-

erational use.

4. Modified Tanaka-Kawano Approach

(program: wsd-7.c): This approach was
developed for solving a general equilibrium
model by Tanaka and Kawano [12, 1996]
and extended to solve the multi-dimensional
case. The main feature is: if the sign of the
same excess demand function changes, reduce
the currently assigned incremental step length
by half, if the absolute value of the excess
demand function is increased, then reverse
the direction of the incremental step length,
if otherwise, reassign the same step length

and continues the iteration.

5. Three Traditional Nonlinear Equation
Solvers: the Bisection Method (program:
wsd-8.c), the Secant Method (program: wsd-
10.c),and the Traub Method (program:
wsd-11.c). An overview of the methods of
the nonlinear solvers mentioned here has
been briefly treated and restricted to the
cases of univariate functions for illustrating
each method.’

1) Bisection Method: This method is based
on systematically reducing the interval of uncer-
tainty by function comparison. Suppose that an
initial interval [a, b] has been specified in
which f(a)f(b) < 0. We evaluate f at the
midpoint of the interval and test its sign. If
the function value is zero, the algorithm termi-
nates. Otherwise, a new interval of uncertainty
is produced by discarding the value of a or b,
depending on whether f(a) or f(b) agrees in
sign with f at the midpoint.

3The explanations were referred to Gill, Murray, and
Wright [3, 1986: 83-87] and Togawa [13, 2000: 205-217]

in detail.

2) Secant Method: This method is also
called the method of linear interpolation.
In Newton's method, /' is required at every
iterate. f'may be very expensive, trouble-
some, or even impossible to compute. A dif-
ferent method is suggested by using the same
idea of approximating f by a straight line.
Filzg) is replaced in the Newton formula
by the finite-difference approximation I fi —
Fe_11/ize — za_1), where Sk denotes F{Fi)-

The iteration is usually rapidly converged.

3) Traub Method: This is an improved
version of Muller method which is based on
approximating the function in the neighbor-
hood of the root by a quadratic polynomial.
This gives a much closer match to the actual
curve, compared with the one approximating
the function in the neighborhood of the root
by a straight line. A second-degree polyno-
mial is made to fit three points near a root
and the proper zero of this quadratic formula
is used as the improved estimate. This process
is repeated until the iteration is converged.

4 Simulation Results

Among the seven alternative approaches start-
ing with the same initial values, the best ap-
proach was the modified Kimbell-Harrison
approach which achieved a high computational
precision with only 20 iterations to obtain the
converged values (see Program wsd-1.c in the
Appendix). I applied this approach to the ex-
ample drawn from Shoven and Whalley [10,
1974]. In Kawano [6, 2003: 2-27.], the num-
ber of iterations was 409 over the Scarf's al-
gorithm, which Shoven and Whalley used to
solve the same problem with 1653 iterations.
The Joosten-Talman approach also achieved a
high precision with just 30 iterations (see Pro-
gram wsd-3.c in the Appendix). The modified
Tanaka-Kawano approach achieved a high

27



precision, but after 176 iterations (see Pro-
gram wsd-7.c in the Appendix). Among the
traditional nonlinear solvers, the Bisection and
the Traub methods performed well with high
precisions, even though the number of inner
loop iterations seems large (see Programs
wsd-8.c and wsd-11.c in the Appendix). The
Secant method performed very poorly, since it
did not achieve a high precision with 5,000
iterations (see Program wsd-10.c in the Ap-
pendix). The Scarf approach performed very
poorly and did not achieve a high precision
with over 1 million iterations, even though its
computational time was 0.142 seconds which
is comparatively long (see Program scarf3.c in
the Appendix). The other approaches took less
than 0.001 second to converge. Even if the
Scarf approach did poorly in this simulation,
this discretized grid method could be used ini-
tially to search for approximately converged
values over the entire n-dimensional unit sim-
plex. Then, these approximately converged
values could be fed into the other higher pre-
cision algorithms. These experiments were
programmed in C-language, and conducted on
the GCC version 4.0.1 compiler (Apple Com-
puter, Inc.). The verified reliability of the
simulation results in double precision (1.0e-
15).

5. Conclusion

In order to see the empirical applicability
of these seven alternative approaches, in this
paper I conducted numerical simulations of
the simple illustrative model and compared
their performances. As a result of the simula-
tion exercise, among them the best approach
was the modified Kimbell-Harrison approach,
which achieved a high computational precision
with only 20 iterations to obtain the con-
verged values. Since it is considered the most
promising approach, I applied the method to

28

the example drawn from Shoven and Whalley
[10, 1974], and it successfully computed the
model.
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APPENDIX

A Computational Results

The converged values

PROGRAM: scarf3.c
ALGORITM: Scarf

/11 1.Computational time & Iterations I/l

1—1) Initial values: p[0]=0.999998
p[1]=0.000001

1 —2) Iteration for general equilibrium
loop: No.= 1206418

1 —3) Computational time: 0.142 seconds
have passed.

1 2. Commodity prices Prices[i] I/

2—1) p[0]= 0.396790000000000
2—2) p[1]= 0.301877000000000
2—3) p[2]= 0.301333000000000

Il 3. Excess demands for commodity
markets rho L[k],rho K[k] I/l

3—1) rho[0]= 0.000136092139428
3—2) rho[1]=—0.000082815186317
3—3) rho[2]=—0.000096239044510

The converged values

PROGRAM: wsd—1.c
ALGORITHM: Modified Kimbell-Harrison

/1 1. Computational time & Iterations I//

1—1) Initial values: p[0]=0.999998
p[1]=0.000001
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1 —2) Iteration for general equilibrium loop:
No.= 20
1 —3) Computational time: 0.000 seconds

have passed.

/Il 2. Commodity prices p[i] /Il

2—1) p[0]= 0.396790862115855
2—2) p[l]= 0.301876529779712
2—3) p[2]= 0.301332608104433

/Il 3. Excess demands for commodity
markets rho[i] 11/

3—1) rho[0]= 0.000000000000000
3—2) rho[1]=—0.000000000000007
3—3) rho[2]= 0.000000000000014

The converged values

PROGRAM: wsd—3.c
ALGORITHM: Joosten..Talman

/Il 1. Computational time & Iterations [//

1—1) Initial values: p[0]=0.999998
p[1]=0.000001

1 —2) Iteration for general equilibrium loop:
No.= 30
1 —3) Computational time: 0.000 seconds

have passed.
/Il 2. Commodity prices p[i] /l/
2—1) p[0]= 0.396790862115855
2—2) p[l]= 0.301876529779712

2—3) p[2]= 0.301332608104433

/Il 3. Excess demands for commodity markets

rho[i] 11/

30

3—1) rho[0]= 0.000000000000000
3—2) rho[1]=—0.000000000000007
3—3) rho[2]= 0.000000000000014

The converged values

PROGRAM: wsd—7.c
ALGORITHM: Modified Tanaka..Kawano

/Il 1. Computational time & Iterations ///
1—1) Initial values: p[0]=0.999998
p[1]=0.000001
1 —2) Iteration for general equilibrium loop:
No.= 176
1 —3) Computational time:

0.000 seconds

have passed.

/1l 2. Commodity prices p[i] /l/

2—1) p[0]= 0.396790862115855
2—2) p[l]= 0.301876529779712
2—3) p[2]= 0.301332608104433

/Il 3. Excess demands for commodity markets

rho[i] 1/

3—1) rho[0]= 0.000000000000028
3—2) rho[l]= 0.000000000000000
3—3) rho[2]=—0.000000000000028

The converged values

PROGRAM: wsd—8.c
ALGORITHM: bisection method

/Il 1. Computational time & Iterations ///

1—1) Initial values: p[1]=0.000001

1—2) Iteration for general equilibrium
loop: No.= 7
Bisection inner loopl: No.= 32767
Bisection inner loop2: No.=1635511312



1 —3) Computational time: 0.000 seconds
have passed.

/Il 2. Commodity prices p[i] I/

2—1) p[0]= 0.396790862115855
2—2) p[l]= 0.301876529779712
2—3) p[2]= 0.301332608104433

/Il 3. Excess demands for commodity markets

rho[i] 11/

3—1) rho[0]= 0.000000000000000
3—2) rho[1]=—0.000000000000007
3 —3) rho[2]= 0.000000000000014

The converged values

PROGRAM: wsd— 10.c
ALGORITHM: secant method

/Il 1. Computational time & Iterations ///

1 —1) Initial values: p[1]=0.000001

1 —2) Iteration for general equilibrium
loop: No.=5000

1 —3) Computational time: 0.010 seconds
have passed.

/Il 2. Commodity prices p[i] I/
2—1) p[0]= 0.396788992008012
2—2) p[l]= 0.301876563781672

2—3) p[2]= 0.301334444210315

/Il 3. Excess demands for commodity markets

rho[i] 1//

3—1) rho[0]= 0.000315092435322

3—2) rho[1]= 0.000000000000000
3—3) rho[2]=—0.000414905140133

The converged values

PROGRAM: wsd—11.c
ALGORITHM: Traub method

/1 1. Computational time & Iterations /l/
1 —1) Initial values: p[1]=0.000001
1 —2) Iteration for general equilibrium loop:
No.=7
Ist inner loopl: No.= 32767
Ist inner loop2: No.= 1678281744
1 — 3) Computational time: 0.000 seconds
have passed.

/1 2. Commodity prices p[i] I/l

2—1) p[0]= 0.396790862115855
2—2) p[l]= 0.301876529779712
2—3) p[2]= 0.301332608104433

/Il 3. Excess demands for commodity markets

rho[i] 1//

3—1) rho[0]= 0.000000000000000
3—2) rho[1]=—0.000000000000007
3 —3) rho[2]= 0.000000000000014

The end of the output flie
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