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1. Model 

Many body problems have been extensively discussed since the 1950s and great progress 

has been made.)) This progress was possible mainly because Feynman2) invented an 

efficient diagrammatic method. Recently, however, there have appeared difficult problems 

such as strong interactions and large amplitude phenomena which can not be solved by 

straightforward application of Feynman diagrams. 

Bosonization)) is one of the methods available to approach those difficult problems. The 

method enables one to sum up a series of diagrams effectively so that even a non­

perturbative effect can be taken into account. So far, the Bosonization method has been 

successfully used, especially in nuclear physics3) and in low temperature physics.4 ) For 

simple Fermion interactions the Bosonization can be achieved by Hubbard-Stratonovich)) 

transformation through the path integral. Up to now, however, this transformation has been 

applied only to one kind of Boson. In the present paper two kinds of Bosons are introduced 

in the Bosonization. 

Our model is given by 

(1) 

in the standard notation. The corresponding partition function in Euclidean formalism is 

then 

z= J Dt;J+Dt;J exp(-A) (2) 

where the integral is the path integral over Grassmann numbers t;J +, t;J and A is the action 

defined by 

(3) 

with the bare term 

A o=t;J +( 1 )(31 + ~) 12 t;J(2) (4) 

and the interaction 
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(5) 

In these formulae the number signifies space, time (imaginary) and spin. From now on 

repeated numbers should be summed unless otherwise stated. The two-body interaction is 

defined by 

(6) 

2. Hubbard-Stratonovich transformation 

The original transformation5) can be cast into Gaussiann integrals over Grassmann 

numbers.4 ) For the present model in Eq. (2) it is 

(7) 

where c is an unimportant factor and 

(8) 

with n(1)= 1/1+( 1) 1/1 (1). If the path integral over Grassmann numbers are performed, a 

purely Bosonic theory emerges, 

(9) 

where the effective action is given by 

(10) 

The new Boson describes a density fluctuation and is convenient to study the bubble 

diagram. This diagram is important for screening phenomena in the high density region. 

The transformation can be extended for a bilocal Bosonic field}) which depicts particle­

hole pairs and corresponds to the ladder diagram. The formula extended is 

(11 ) 

where the auxiliary field p is hermitian and 



( 12) 

with p(21) = If! +(2) If! (1). Again, the path integral over Grassmann numbers makes the 

theory Bosonic, 

z=J Dp exp(-Aefrlp]) (13 ) 

where 

(14) 

3. Extension 

The two transformations in Section 2 can be combined to establish a single theory. The 

combination is useful because the first transformation is important in high density while the 

second is crucial in low density. The combined theory then would have wider applicability 

than either of the two transformations. 

The combination of the transformations is easily achieved by making a product of Eqs. 

(II) and (7) after each action in Eqs. (12) and (8) is multiplied by a and h respectively. The 

factors must of course satisfy 

a+h=1 (15) 

to ensure that the original theory in Eq. (2) is retained. The factors may be chosen to 

improve perturbative results. The partition function is now 

(16) 

where 

To reach the above equation the factors a and h were absorbed into the Bosons, and an 

irrelevant front factor for the partition function was ignored. As in Section 2 Grassmann 

numbers can be integrated out to produce the Bosonic theory described by cjJ and p , 

z= JDcjJ Dp exp( -Acff[cjJ,p]) ( 18) 



where the effective action is now 

4. One-loop calculation 

To gain an insight into the effective theory in Eq. (18) the one-loop evaluation is 

presented here. The stationary values of the fields satisfy 

where 

{
ic/JO( 1) = -bv( 12)g22 (0) 

poe 12) = -ave 12)g12 (0) 

g (O)-(3 +;: + iA. P )-1 
- T S lPO- 0 . 

(20) 

(21 ) 

The fluctuation of the fields from these stationary values is controlled in the lowest order 

by the action, 

Aef/
2)[ £5c/J , £5 p] = ~ £5 p (12)/- 1

12;34 £5 p (34) 

-ig41(O)g24(O)i5p(12)i5c/J(4)+ ~ i5c/J (l)d- 1
12 i5c/J(2) 

where the ladder sum 1 is defined by 

I -I 1", 2 3 "' 1 4 (0) (0) 12;34 av(12) u( , )u( , )+g41 g23 

and the bubble sum d satisfies 

Since both fields are coupled to each other it is better to introduce a field doublet 

i5 <I> (12) = (i5 c/J (1) i5 (1 ,2») . 
i5p(l2) 

Then Eq. (22) is now 

(22) 

(23) 

(24) 

(25) 

(26) 



where the propagator K is defined by 

( 

I-I ') -io- (O)(T,) (0)) 
K- I '). = L;34 041 0_3 

1_.34 . (0) (0) d- I . 
-lg23 g41 13 

(27) 

Therefore, the energy up to the one-loop order is given by 

(28) 

which contains Hartree and Fock results. 3) 

In order to investigate Eg. (28) further the two-body potential must be explicitly given 

and the eigenvalue of the matrix K should be found. These will be published elsewhere. 
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