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Duality Transformation on a 
Non-Cubic Lattice 
Seiju Ami* 

1. Introduction 

Interacting models on a lattice are at times easier to understand in dual versions. I) There 

are two good reasons. for this. Firstly, the dual version could show explicitly local 

excitations responsible for changes of state. Secondly, it could relate states in a weakly 

interacting region and in a strongly interacting region. Knowledge of a state in either of the 

two regions can be used to clarify the state in the other region. 

In this paper the duality transformation is extented for a lattice of non-cubic symmetry 

and the systematics of the transformation is explained. This extension is necessary because 

in the real world non-cubic symmetry is ubiquitous. So far the duality has been exploited in 

spin models, gauge theories2) and string theories,3) and has brought good understanding of 

these theories. The lattice, however, has been assumed almost always to have cubic symmetry. 

2. Dirichlet and Vorono construction 

The construction has been used before for analyzing random lattices. 3) 

2.1 Geometry 

Consider a two-dimensional lattice (Fig. 1) with lattice points {Mi} at coordinates 
- -

Xi. Against this direct lattice L the dual lattice L can be constructed according to Dirichlet 

and Vorono! (or Wigner and Seitz in physics literature).3) Place a cell C j enclosing each 

lattice point Mj so 

Fig. 1 Direct and dual lattice 
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that any point within the cell Cj is closer to the point Mj than any other lattice point. As a 

result any link connecting nearest neighbours such as MjMj is cut perpendicularly by one of 

the edges of the cell Cj. These cells then form the dual lattice. 

The direct lattice is characterized by 

J.-IJ 

the link distance (I-simplex) connecting MjMj and 

J.-k IJ 

the area of the 2-simplex formed by MjMjMk. It is assumed that a O-simplex satisfies 

The dual lattice, on the other hand, is described conveniently by 

a­I 

the area (2-cell) of the cell C j and 

a- -IJ 

(I) 

(2) 

(3) 

(4) 

(5) 

the length of the edge (I-cell) perpendicular to the link MjMj. The point shared by three 

adjacent cells is called a vertex. The vertex is also a meeting point of three neighbouring 

edges. 

2.2 Dynamical variables 

To simplices and cells are assigned the dynamical variables, forms and densities 

respectively.3) The set of O-forms 

{~i } (6) 

is ascribed to the O-simplices and is denoted by La. Similarly the sets of 1- and 2-forms 

which are both anti symmetric , 

(7) 
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j(} 

and 

{ CP'j'k} (8) 

are associated with the 1- and 2-simplices and are called L] and L2 respectively. The 2-

densities 

(9) 

set of which is [2 are attached to the positively oriented 2-cells. Similarly, the set of 1-

densites 

(10) 

which is named L] is attributed to the oriented I-cells. On vertices are placed the O-densities 

(11) 

set of which is denoted by L2. 

It is useful to note that the simplices are averages of fields defined in the continuum. For 

example CPi is the representative of a scaler 

( 12) 

, CPij the average of a vector 

(13 ) 

and CPUk the average of a tensor 

_1 J.Jdx l1 !\dx'·cp (x) 
/"k (iJ'k) J.1 v 
II' . 

(14) 

where (Uk) in the last integral signifies a positively oriented triangle. 

As a preparation to set up an interaction between neighbouring dynamical variables a 

scaler product is introduced between forms and densities. They are 

<cpllj/>=-f, ~CPilj/i 
• I 

( 15) 



(16) 

(17) 

where ij and ijk denote nearest neighbour pairs and triangles. 

Furthermore a one-to-one correspondence can be defined between Lp and Ld_p.This is the 

duality that ({Jijk has the dual partner 

(18) 

2.3 Difference operators 

Finally operators are introduced on a lattice which are the analogs of gradient and 

divergence in the continuum. Schematically,3) 

duality _ 
--- Ld -p 

dT ~ t dT* (19) 

Lp+1 --- Ld-- I 
duality p 

where d, dT are the gradient operators and its tranpose, and d*,dT* the divergence operators. 

The operators in Eg. (19) all satisfy 

d2=0 

d*2=0 

d
T2

=0 

dT*2 =0. 

The gradient operator d acts as 

!"({J"+!'k({J 'k+ h'({Jk' (d({J)ijk IJ IJ J J I I 

/"k IJ 

and for ({J E L2 

(20) 

(21) 

(22) 
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1'; 

dcp=O. (23) 

The transpose operator dT is defined by 

(24) 

Thus 

(25) 

(26) 

where the summation must be done so that ij and ijk correspond to an edge and a vertex 

respectively. The divergence operator d* is defined via the duality as shown in Eq. (19). For 

example d* which acts as the transformation from L] to Lo can be constructed by the 

following steps. First, by duality CPu is transformed into iPu which second, the operator dT 

converts to (d T (f»i' an element of [2 and finally this element is ch~nged to an element of 

Lo. The result is 

* 1 \' 
(d ({) )i= -(J' L. (Ji,' ({)i," 

1 j(i)' , 
(27) 

Similarly the operator d T* can be defined by duality, 

(28) 

3. Villain model 

Let us apply the method in the previous sections to Villain model]) which approximates 

the behaviour of XY model for the large coupling constant.4 ) The partition function of the 

model goes as 

(29) 

where (J i is the angle variable at the i-th lattice site, nU the integer field associated to the 

link (ij), /3 the coupling strength, and the action is defined by 

(30) 



This partition function can be transformed by Poisson summation formula as 

(n ~ )(nJ1[d8.) 1 -A' Z= f..J ....=..::1. --e 
(ij) hij=-oo i -1[ 2n ';2n/3 

(31 ) 

where the action is given by 

A'- ",{_I b .. 2-ib .. (8·- 8 ')1 - f..J 2{3 lj IJ I J . 
(ij) 

(32) 

The action in Eg. (32) can be interpreted according Section 2. The second term in the 

curly bracket contains a derivative of angles, 

8·- 8·= (d8) .. 
I J lj 

(33) 

according to Eg. (21) (from now on Ii ... = O"j ... = I for simplicity). Hence the action A' in Eg. 

(32) takes on the form 

A'= 21{3 <blb>-i<d8Ib>. (34) 

In this expression it is obvious that the integer fields bi) are the dual fields and reside on 

edges of the dual lattice. The derivative in the second term in Eg. (34) can be transposed 

according to Eg. (24) so that 

(35) 

Then the angle integral in Eg. (31) can be performed. The partition function in Eg. (29) is 

now expressed entirely in terms of the dual fields bi)' 

(36) 

where N is the total number of links and 

A"= 21{3 <bib>. (37) 

The transformation of the theory from Eg. (29) to Eg. (36) is called the duality 

transformation. 1),2) Note that in the dual form the interaction strength appears reversed as in 

Eg. (36). 

The theory in Eq. (36) can be treated entirely in the dual lattice. The constraint in Eq. 

(36) can be solved easily by 



(38) 

because of Eg. (20). 

4. Conclusion 

The duality transformation for non-cubic symmetry was possible because the action in 

Eg. (30) was represented by the operator d in Eg. (21), 

(39) 

Fig. 2 Dynamical variables 

This indicates that once a theory is expressed in terms of the operators in Eg. (19) the 

duality transformation could be done for a non-cubic lattice. The melting model,5) for 

example could be extended in this way for non-cubic symmetry. 
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