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A Simple Fixed Point Algorithm for a 
Static General Equilibrium Model with 
Tax Policies 
Hiroshi Tanaka * & Hidetaka Kawano * 

1. INTRODUCTION 

A purely theoretical representation of an economy in the Walrasian general equilibrium 

framework was formalized in the 1950s. Ever since the outset of its theoretical formulation, 

the general equilibrium framework has been very intractable in dealing with multi

dimensional empirical issues due to the lack of both efficiently operational algorithms and 

computational power. However, this kind of criticism no longer holds because both recent 

technical advancements in computer technology and subsequent refinements in operational 

algorithms have been made since the first applications of Scarfs algorithm (1973). 

In this paper, we applied a simple fixed point algorithm to the general equilibrium model 

to demonstrate that the algorithm can efficiently execute a structurally more complex 

general equilibrium model with various tax policy options than the model used in our 

earlier paper (Tanaka and Kawano, 1996). We believe that this algorithm can be of 

considerable empirical use. We followed the solution procedure set out by Shoven and 

Whalley (1984, 1992) who considerably simplified the general equilibrium solution 

procedure by elegantly reducing the dimensionality of the solution space to the number of 

factors of production in the Walrasian general equilibrium structure. The main feature of 

this algorithm is its relative simplicity in both concept and programming, in comparison 

with the unit simplex methods, such as the algorithms of Scarf ( 1973) and others briefly 

described by Shoven and Whalley (1992), for a general equilibrium model. 

We demonstrated the empirical usefulness of this algorithm in the framework of the same 

two-good-two-factor general equilibrium model incorporating a system of equal tax yield 

termed as differential tax incidence by Musgrave (1959) and its related government 

expenditure I). With the presence of taxation, we experimented with the competitive 

equilibria under the nine tax policy options. Satisfactory results were gained and presented 

in tables 1- 7 with the computational time ranging from 0.033 to 0.150 seconds for each tax 

policy simulation. 

1 ) The methods for incorporating taxes into a formal general equilibrium model were shown by Shoven 

and Whalley (1973), Ballard, Fullerton, Shoven, and Walley (1985). 
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2. THE OUTLINE OF THE MODEL 

2.1. The demand side of the model 

There are two consumers, one rich (R) and the other poor (p), in the economy. 

Both consumers maximize their own utilities by solving the following constrained 

maximization: 

2 
\' p ,( 1 + T ,)X,III = Y 111 -t ',II ( Y 111_ F) s. t. i';-l 1 1 1 0., 0 

where 

Xt = ith commodity demand (i=1,2) for the mth consumer (m= R, p), 

LIII = labor endowments for the mth consumer (m= R, p), 

Kill = capital endowments for the mth consumer (m= R, p), 

Pi = producer price of commodity i (i=l, 2), 

Pi O+T) = consumer's price (i=l, 2), 

T i = commodity tax rate (i=l, 2), 

T / = payroll tax rate (the labor tax rate could also vary by industry) (i=J,2), 

w 0 + T /) = corresponding user price of labor for producers (i = I, 2), 

T / = sector-specific capital income taxes (i=l, 2), 

rO+Tt/) = gross-of-tax price of capital in sector i (i=J, 2), 

'" = (marginal) income tax rate, 

F = real personal exemption, 

Tv (YIII-F) = tax liability of the mth household (m= R, p), 

y III = revenue-distribution shares among consumers (m= R, p), 

T = tax revenues, 

yilT = revenue transfer for mth household (m= R, p), 

w = wage rate, 

r = rental rate, 

T = tax revenues, 

y III = revenue-distribution shares among consumers (m=R ,p), 

YOIII = given income for the mth consumer (m=R , p) 

= wLIII+rKIII+y lilT, 
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U'11(.) = a well behaved neoclassical homothetic (strictly quasiconcave) utility 

function for the mth consumer (m=R, p)2l. 

The commodity demands for two consumers are the solutions to problem (1). The 

demand function for mth consumer3l (m=R , p) is : 

X .'11=X.I11( (l+T) P (l+T) ym_tm(ym -F)) 
I I PI I' 2 2' 0 Y 0 

2.2. The production side of the model 

There are two industries (;= I, 2). We assume aggregate (constant returns to scale4l ) 

industry production functions for both industries. An aggregate producer in each perfectly 

competitive industry5l maximizes his profit by solving the following constrained cost

minimization problem : 

where 

C = (direct) cost function, 

Li = labor demand, 

Ki = capital demand, 

Q(/ = given output level, 

Qi () = A well behaved neoclassical (strictly quasiconcave) production 

function for the ith aggregate industry production function (;=1,2), 

2) If individuals in each group have both identical and homethetic preferences, a higher utilty of each 

group indifference curve indicates the potential welfare improvement for all individuals in a group. 

3) If the values of w, r, and T change, then the income of the mth consumer (m=R, P) is expressed as 

ym(r, w, T)=wLm+rf<"1+y mT. The resulting demand functions xim are now assumed to be homogeneous 

of degree zero in (r, w, 1). Since govemment revenue Tis a part of the demand function, the problem of 

simultaneity that consumers face in determining their demands can be solved(8allard, Fullerton, 

Shoven, and Whalley, 1985). 

4) At the competitive equilibrium price with zero profits, the firms can operate at any level of their 

production and market share. The assumption of a constant returns to scale technology in industry 

structure seems appropriate in the long run in this general equilibrium framework. Varian (p.356,1992) 

holds his view that "if we can always replicate, the only sensible long run technology is a constant

returns-to scale technology." 

5) Let us quote the phrase of Varian (p. 216,1992): 

The question is not whether any particular market is perfectly competitive-almost no market is. The 

appropriate queation is to what degree models of perfect competition can generate insights about real

world markets. 



T / = payroll tax rate (the labor tax rate could also vary by industry)(i=1, 2), 

w (J + T /) = corresponding user price of labor for producers (i = 1, 2), 

T / = sector-specific capital income taxes (i = 1, 2), 

r(J+ Tki) = gross-of-tax price of capital in sector i (i=1, 2). 

The derived factor (labor and capital) demand functions for given output level Qoi are: 

Therefore, the factor demand functions as output changes are given as : 

2.3. Excess demand conditions 

Excess demand conditions6} for goods, factors, and tax revenues 7) are: 

p 

L X/n(PI(l+TI)' P2(l+T2)' r, w, T) - QiSO, 
IIl=R 

2 P 

.L Li(Qilr(l+T~)' W(l+T~)) -L LmS 0, 
1=1 m=R 

2 P 

.L Ki(Qil r(l+T~)' W(l+T~))- LKmS 0, 
1=1 m=R 

2 P 

L L TpX.m(r, W, T) 
i=1 m=R 1 1 1 

2 

+ T/ .L wLi(r(l +T~), w(I +T~), T) 
1=1 

2 

+.L T~rKi(r(l+T~), W(I+T i
/), T) 

1=1 

P 

~Il; TyCwLI11+r~+ymT - F)- TS ° 
(i = I, 2), (m=R, P). 

(5) 

6) The existence and uniqueness of competitive equilibrium are discused in Arrow and Hahn (1971), and 

elsewhere. In the case of a general equilibrium framework with taxes, see an existence proof in Shoven 

and Whalley (1973). 

7) In this model, a govemment budget imbalance equation must be included. 
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2.4. Zero-profit conditions 

If the output of industry i is positive, the price of output i is equal to the long run average 

costs (zero-profit in the long run) under perfect competition. 

= w(l +T~)Li(Qi I r(l +T~), w(l +T~))+r(l +T~)Ki(Qi I r(l +T~)' w(l +T~),) 
Qi 

=w(I +T~)l i (I I r(I +T~), w(I +T~)) +r(I +Ti
k) ki(I I r(I +T ~), w(I +T ~)), 

where 

Y(i=1,2) 

2.5. Walras's law 

Finally, any set of prices for a general equilibrium model must satisfy Walras's law for 

theoretical consistency. Walras's law in this model is stated as: 

w( 1 + Ti) [tl Li (.) -lilt. £111] + 

r(I+T~) [tI Ki(.) -1IIt. Km ] + 

2 P 2 

L L Tp·X!l1 (.) + LT~wLi (.) + 
i=I,II=R 1 1 1 i=1 

2 P 
.LT~rKi (.) + L T)wLII1+rK'11+yI11T- F) - T= O. 
1=1 III=R . 

3. A SOLUTION PROCEDURE 

(8) 

The solution procedure for the general equilibrium model can be considerably simplified 

by reducing the dimensionality of the solution space to the number of factors of production. 

In other words, the equilibrium characterized by a vector (p /' P2, r, w, T) for this two-good

two-factor model with various tax policy options is characterized by a vector (r*, w*, T*). 

We follow the Shoven and Whalley procedureS) set out as : 



Step 1: Determine the factor demands per unit of output i, since both factor demand 

functions Li and Ki are derived as solutions to constrained cost-minimization problem (3). 

= I i(r, w, I) 

V(i= 1,2) 

Step 2: Compute the commodity price Pi with the zero-profit conditions that the price of 

output i is equal to the long run average cost (s). 

(10) 

V(i= 1,2) 

Step 3: Compute the individual commodity demands (Xl, Xl, Xl, Xl) by substituting 

the commodity prices (PI and P2 ) computed in step 2. 

(ll) 

V(i= 1,2, m=R, P) 

Step 4: Compute the market demands for the two commodities by the two consumers, and 

then compute the outputs of both commodities through the market clearing condition for 

the two commodity markets. 

p 

Qi(r, w) = L X'?(r, w, T), (i = 1,2), 
III=R 

8) See chapter 2 in Shoven and Whalley (1992). 
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Step 5 : Compute the factor demand functions Li and Ki through (9). 

Y (i= 1,2) 

Step 6: Find the converged equilibrium values r* and T* in both excess factor demand 

functions, Pk for capital K and PI for labor L, given initial values for the variable parameters 

rand T by treating the wage rate w as a numeraire. When the converged r* and T* are 

found, both excess factor demand functions and the government budget imbalance equation 

Ph PI, and Pc simultaneously converge to zeros9). An equilibrium is characterized by a 

vector (r*, w*, T*), since both demand and supply functions are now homogeneous of 

degree zero in factor prices and tax revenue. 

2 P 

Pk(r, Tlw = 1) = L Ki(r, w, T) - L]("1, 
1=1 m=R 

2 P 2 

pc(r, Tlw = 1) = .L L r ipixj(r, w, T)+L r/wLi(r, w, T) 
~lm=R ~1 

2 P 
+L dr~(r, w, T)+ L r /wLm+r]("1+ ymT- F) - T. 

1=1 m=R . 

4. STEPS IN APPLYING THE ALGORITHM TO THE MODEL 

The purpose of applying this algorithm to our general equilibrium model is to 

demonstrate that the algorithm can efficiently execute a structurally more complex general 

equilibrium model with various tax policy options than the model used in our earlier paper 

(Tanaka and Kawano, 1996). We attempt to find the converged equilibrium values r* and 

T* in both excess factor demand functions Pk , PI and in the government budget imbalance 

equation Pc. We treat the wage rate w as a numeraire. When the simultaneously converged 

equilibrium values r* and T* are found for both excess factor demand functions Pk and PI, 

the government budget imbalance equation Pc must also converge to zero due to Walras's 

9) Walras's law also guarantees that the value of the sum of the two excess factor demand functions Pk 

and P, is zero, thus the remaining govemment budget imbalance equation PG must be zero. 



law. Therefore, we can concentrate on working on the functions Pk and PI so as to find the 

converged equilibrium values r* and T*. The steps involved in applying this algorithm are 

stated as follows: 

Step 1: Give a set of initial values (rl' TI ) for the set of parameters (r, T), and calculate the 

corresponding starting values Pk (rl' TIl w=l) and PI (rl' T l lw=l) through steps 1 to 6 in 

the general equilibrium solution procedure in section 3. Then, assign the arbitrary 

incremental step lengths ~r and ~T. 

Step 2: Now hold T fixed at the arbitrarily chosen level as shown in Figure 1, and 

then calculate the first sequential sets'O) of Pk and PI towards the first target function 

Pk (r, T I w= 1) =0 by changing the parameter value of r with the predetermined ~r parallel 

to the horizontal r-axis in the same manner as step 3 in our earlier paper (1996) II). Repeat 

this sequence of calculations until the case of step 3-a (see footnote 11) emerges, that is, 

the sign of Pk changes. 

Step 3: In the same way, hold r fixed, instead of T, at the chosen level as shown in step 2 in 

Figure 1, and then calculate the second sequential sets of Pk and PI towards the second target 

function PI (r, T I w= 1) = 0 by changing the parameter value of T by the predetermined ~T 

parallel to the vertical T-axis. Repeat this sequence of calculations until the case of step 3-a 

(see footnote 11) emerges, that is, the sign of PI changes. 

Step 4: Repeat steps 2 through 3 in the cobweb form as illustrated in Figure 1 for both 

excess factor demand functions Pk (r, T I w= 1) and PI (r, T I w= 1) by changing the target 

functions alternately until both Pk and PI converge to zeros simultaneously so as to find the 

converged equilibrium values r* and T*. The remaining government budget imbalance 

equation Pc must also be balanced at the converged equilibrium level of the parameter 

values r* and T*. 

10) In the same manner as step 2 in our earlier paper (1996), the first sequential set of Pk and PI is 

{Pk(r2=r l +.t::. r , 72=Tl lw=1), PlrFrl+.t::.r, 72=TI I w=1)},where the endpoint r2,of each step length is 

constantly renamed as the beginning point rl of the next step length as we move along towards the 

first target function Pk(r, T I w=1) =0 in Figure 1. 

11 ) Step 3 in our earlier paper is briefly summarized as follows: 

Step 3-a: If the signs of Pk(rl, TIl w=1) and Pk(r2, 72 I w=1) are different, reduce the currently assigned 

incremental value .t::.r by half. Otherwise, proceed to step 3-b. 

Step 3-b: If I Pk(rl, TIl w=1) I < I Pk(r2, T2 I w=1) I, reverse the direction of the incremental value.t::. r 

Otherwise, proceed to step 3-c. 

Step 3-c: If I Pdrl' TIl w= 1) I > I Pk(r2, T2 I w= 1) I, reassign r2, T2, and the corresponding value 

Pk(r2, T2 I w=1) (which have already been calculated in step 2) as rl, T I , and Pk(rl, TIl w=1) 

respectively. 
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T 

Each sequential step 

1 
1_-----'l.~ 

2 

1 

2 

Initial starting value 

Sequence 1 

2 

T1r-~~~~----~--~~ 

T* 

r* 

Figure 1 

Pk (r, TI w=1) = 0 

r 

5. SPECIFICATION OF PARAMETER VALUES AND FUNCTIONAL FORMS 

5.1 Parameter values 

Parameter values for this simple general equilibrium economy are specified in the 

following tables: 

Demand side & factor endowments 

R R P P R P KR KP 
Q'j Q'2 Q'j Q'2 /1 P 

0.5 0.5 0.3 0.7 1.5 0.75 25 0 

where 

a = consumer share parameters between Xl and X2' 

f-1- = elasticities of substitution in consumption between Xl and X2 

I'll = household labor endowments (m= R, P ). 

KI11 = household capital endowments (m= R, p). 

<j;2 

1.5 2.0 

I 
(J 

0.6 

Supply side 

2 
(J 

0.7 2.0 

LR LP 

0 60 

0.5 



where 

cJ;= parameters for scale factors. 

0' = factor weighing parameters. 

(j = elasticities of substitution between factor inputs Ki and Li. 

5.2 Functional forms 

The functional forms for this simple general equilibrium economy with both CES utility 

and production functions are specified, and the resulting output and factor demands are as 

follows: 

Demand side 

CES utility functions: 

V m=R. P 

Demand functions : 

a/l1 [ym_ T.,~I1(yl1l-F)J 
X~l1 = --------::---'---------

1 [(I+T.)P}u m( t a.I1l[(I+T.)p.J(I-,uI11) ) 
1 1 i= I 1 1 1 

v (m=R, P, i=I,2) 

Supply side 

CES production functions: 

V i=I,2. 
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Factor demand functions: 

Y (i= 1 ,2), (m= 1,2) 

6. NUMERICAL SIMULATIONS FOR TAX POLICY OPTIONS 

We have demonstrated that our algorithm can efficiently execute the model by way of 

nine numerical examples for tax policy options listed in the table below. Policy 1 indicates 

a no policy intervention equilibrium. Policies 2-9 indicate the case of an equal-tax-yield 

equilibrium termed as differential tax incidence by Musgrave (1959). The satisfactory 

results are presented in the subsequent tables 1-7. In this model, the competitive equilibria 

must be examined with care. Prices are sellers' prices for inputs (prices net-of-input taxes) 

and wholesale prices for outputs (prices net-of-consumer taxes). The same number of 

dollar revenue yield ($34.710 in our examples) for each tax regime does not mean the 

same thing, since the amount of government purchases are influenced by different price 

levels 12). Finally, the computational time for each policy in table 2 ranges 0.033 to 0.150 

seconds. Our algorithm seems to execute the model with great efficiency and accuracy. 

Tax policy options 

Policy 1 No policy intervention 

Policy 2 Imposed values: Payroll tax rate: '/= ,F=O.3, Commodity tax rate: 

'1=0.2, '2=0.1, Revenue share: y R=O.4, Y P=0.6, No other taxes. 
Results: Tax revenue: T=34.710. 

Policy 3 Imposed values: Tax revenue: T=34.710, Revenue share: yR=O.4, 
y p =0.6, No other taxes. 

Results: Commodity tax rate: '1=0.547, '2=0.273. 
Policy 4 Imposed values: Tax revenue: T=34.710, Commodity tax rate: 

'1=0.6, r2=0.2, Revenue share: yR=O.4, yP=O. 6, No other taxes. 
Results: Payroll tax rate: r/= rF=0.040. 

Policy 5 Imposed values: Tax revenue: T=34.71O, Revenue share: yR=O.4, 
yP=0.6, No other taxes. 

Results: Payroll tax rate: r/ = rF=0.579. 

12) The detailed discussion of equal-tax-yield equilibria are provided by Ballard, Fullerton, Shoven, and 

Whalley (1985). 



Policy 6 Imposed values: Tax revenue: T=34.710, Revenue share:I'R=O.4, 
I'P=0.6, No other taxes. 

Results: Income tax rate: '/= r/=0.269. 

Policy 7 Imposed values: Tax revenue: T=34.710, Capital gain tax rate: 
rk l=0.5, rl=0.2, Revenue share: I'R=0.4, I'P=0.6, No other taxes. 

Results: Income tax rate: rl= r/=0.234. 

Policy 8 Imposed values: Tax revenue: T=34.710, Tax exemption: F=10. 
Revenue share: I' R =0.4, I' P =0.6, No other taxes. 

Results: Income tax rate: rl= r/=0.319. 

Policy 9 Imposed values: Tax revenue: T=34.710, Revenue share: I'R=0.6, 
I' P =0.4, No other taxes. 

Results: Income tax rate: rl= r/=0.270. 

Table 1. Tax policy options 

policy 1 policy 2 policy 3 policy 4 policy 5 policy 6 policy 7 policy 8 policy 9 

(1.1) Tax revenue T 0 34.710 34.710* 34.710* 34.710* 34.710* 34.710* 34.710* 34.710* 

(1.2) Income tax ryR= ry 0 0 0 0 0 0.269 0.234 0.319 0.270 
rate for rich 

(1.3) Income tax ryR=a ry 0 0 0 0 0 0.269 0.234 0.319 0.270 
rate for poor (a=1) (a=1) (a=1) (a=1) 

(1.4) Payroll tax 
rate in sector 1 r/= r, 0 0.3* 0 0.040 0.579 0 0 0 0 
(labor income tax 
rate) 
(1.5) Payroll tax 

r/=b r, 0 0.3* 0 0.040 0.579 0 0 0 0 rate in sector 2 
(labor income tax (b=1) (b=1) 
rate) 

(1.6) Capital gain rk l=tk 0 0 0 0 0 0 0.5* 0 0 
tax rate for 
commodity 1 

(1.7) Capital gain rl=ctk 0 0 0 0 0 0 0.2* 0 0 
tax rate for 
commodity 2 

(1.8) Commodity rl= r 0 0.2* 0.547 0.6* 0 0 0 0 0 
tax rate for 
commodity 1 

(1.9) Commodity r;z=dr 0 0.1 * 0.273 0.2* 0 0 0 0 0 
tax rate for (b=112) 
commodity 2 

(1.10) Tax F 0 0 0 0 0 0 0 10* 0 
exemption 

(1.11) Revenue I'R 0 0.4* 0.4* 0.4* 0.4* 0.4* 0.4* 0.4* 0.6* 
distribution share 
for rich 

(1.12) Revenue I'P 0 0.6* 0.6* 0.6* 0.6* 0.6* 0.6* 0.6* 0.4* 
distribution share 
for poor 

Note: The asterIsk "*,, IlldIcates an Imposed value III each polIcy analysIs. 
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Table 2. The computational time and the number of iterations. 

policy 1 policy 2 policy 3 policy 4 policy 5 policy 6 policy 7 policy 8 policy 9 

(2.1) Computational time 0.033sec 0.033sec 0.150sec 0.117sec 0.017sec O.034sec 0.05sec 0.117sec 0.033sec 

(2.2) Numbers of iterations 108 102 429 411 102 141 128 422 110 

Table 3. Welfare (utility) of the rich, and the poor. 

policy 1 policy 2 policy 3 policy 4 policy 5 policy 6 policy 7 policy 8 policy 9 

(3.1) Utility of rich UR 27.872 32.055 28.536 28.973 34.825 28.597 24.882 29.238 32.633 

household Rank 6 3 8 5 1 7 9 4 2 

(3.2) Utility of poor UP 50.891 46.447 49.853 48.992 43.623 50.133 53.865 49.463 45.915 

household Rank 2 7 4 6 9 3 1 5 8 

Table 4. Capital market 

policy 1 policy 2 policy 3 policy 4 policy 5 policy 6 policy 7 policy 8 policy 9 

(4.1) Rental rate r=(rlw) 1.373 1.806 1.429 1.516 2.143 1.372 1.023 1.370 1.362 

(4.2) Capital 1:K' 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 endowments 
(Total capital (i=1,2) 
supply) 
(4.3) Amount of KI 6.212 5.901 5.176 4.723 6.556 6.247 4.915 6.279 6.447 
capital used for 
commodity 1 
(4.4) Amount of J<2 18.788 19.099 19.824 20.277 18.444 18.753 20.085 18.721 18.553 
capital used for 
commodity 2 

Table 5. Labor market 

policy 1 policy 2 policy 3 policy 4 policy 5 policy 6 policy 7 policy 8 policy 9 

(5.1) Wage rate w 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

(5.2) Labor 1:U 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 60.000 
endowments (Total 

(i=1,2) labor supply) 
(5.3) Amount of U 26.366 25.617 23.797 
labor used for 

22.597 27.176 26.451 26.014 26.526 26.922 

commodity 1 
(5.4) Amount of L2 33.634 34.383 36.206 
labor used for 

37.403 32.834 33.549 33.986 33.474 33.078 

commodity 2 



Table 6. Commodity I market 

policy 1 policy 2 policy 3 policy 4 policy 5 policy 6 policy 7 policy 8 policy 9 

(6.1 )Producer price 
PI 1.399 1.824 1.413 1.476 2.202 1.399 1.436 1.399 1.396 

of commodity 1 & =C/QI cost per unit of 
output 
(6.2) Total XI 24.942 24.102 22.084 20.774 25.859 25.038 23.368 25.123 25.571 
commodity 1 

=XIR+Xt demanded 
& supplied =QI 

(6.3) Commodity 1 XIR 11.515 12.369 10.128 9.542 14.362 11.812 9.686 12.075 13.465 
demanded by rich 
household 
(6.4) Commodity 1 

xt 13.428 11.733 11.956 11.232 11.497 13.226 13.682 13.048 12.105 
demanded by poor 
household 

Table 7. Commodity 2 market 

policy 1 policy 2 policy 3 policy 4 policy 5 policy 6 policy 7 policy 8 policy 9 

(7.1) Producer 
P2 1.093 1.428 1.112 1.167 1.717 1.092 1.042 1.092 1.090 

price of commodity 
=C2/02 2 & cost per unit of 

output 
(7.2) Total X2 53.378 55.453 58.024 59.683 53.203 54.256 56.286 54.147 53.574 
commodity 2 =X2

R+X2P demanded & 
supplied =02 

(7.3) Commodity 2 X2
R 16.675 20.344 19.406 20.898 20.868 17.111 15.674 17.497 19.544 

demanded by rich 
household 
(7.4) Commodity 2 

xf 37.704 35.109 38.617 38.785 32.336 37.144 40.612 36.650 34.029 
demanded by poor 
household 

7. CONCLUSION 

We applied a simple fixed point algorithm to the general equilibrium model to 

demonstrate that the algorithm can efficiently execute a structurally more complex general 

equilibrium model with various tax policy options than the model used in our earlier paper 

(Tanaka and Kawano, 1996). We followed the solution procedure set out by Shoven and 

Whalley (1984, 1992) who considerably simplified the general equilibrium solution 

procedure by elegantly reducing the dimensionality of the solution space to the number of 

factors of production in the Walrasian general equilibrium structure. In their solution 

procedure, the zero profit conditions of perfect competition and the linear homogeneous 

properties of both utility and production functions are essential by construction. 

The competitive Walrasian general equilibrium structure is theoretically consistent and 

very useful for empirical analyses. Although the contemporary economy is depicted as 

"monopolistic" in many trade literatures, all agents in a whole economy in the aggregate 

sense cannot be monopolistic price-makers. The force of market price mechanism cannot 
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be undermined. This Walrasian structure with the Armington assumption (Armington 

1969) seems to provide an ideal starting framework for simulating and evaluating the 

effects of many important policy changes on resource allocation, especially in a large 

international economy where scale economies may be fully exploited (Whalley 1985). If 

scale economies and imperfect competition are incorporated into the model of a small open 

economy (Harris 1984), the effects of policy changes seem considerably overestimated. 

Our algorithm illustrated in this simple Walrasian general equilibrium framework is of 

considerable operational use for many empirical analyses for both closed and open 

economIes. 

Finally, we briefly state the main strengths and the possible weakness of the algorithm. 

First, the main strengths are (1) simplicity in both concept and programming, (2) ease of 

calculations (since it does not require either simplex or Jacobian calculations), (3) 

increased accuracy, and (4) assured convergence of the required parameter values with the 

conditions of uniqueness and stability. Second, the possible weakness is that the number of 

iterations for the convergence of parameter values is relatively increased. However, this 

weakness no longer poses a serious problem owing to the recent advancement of computer 

technologies. 

Received: May 22, 1996 
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