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Various Nucleoli in Common Cost 
Allocation 
Masaaki Aoki * 

INTRODUCTION 

The nucleolus is proposed by Schmeidler[1969] as a cooperative game solution. The 

nucleolus has desirable properties as a common cost allocation scheme but researchers in 

the past have not studied the properties of the nucleolus in common cost allocation 

sufficiently. I ) 

We can interpret the nucleolus in the bargaining processes. The nucleolus is the 

allocation scheme in which players of a game admit "minimizing the maximum 

dissatisfaction" as a bargaining rule. 2) The dissatisfaction measure of the nucleolus is 

represented by the excess, which is the difference between the worth of the coalition and 

the allocated amount to the coalition. It is natural that we can conceive the dissatisfaction 

measure other than the excess in common cost allocation. 

Gately[197 4] proposes" propensity to disrupt" as a new dissatisfaction measure in a 

cooperative game. Littlechild and Vaidya[I976] and Charnes and Seiford[ 1978] extend 

"propensity to disrupt" and propose the new nucleolus based on Gately's proposal. Young 

et al. [1980] proposes new nucleolus based on the least core. There are a few studies in 

which these new solutions are applied to common cost allocation. 3 ) The purpose of this 

study is to examine the properties of the new nucleolus described above. 

We formulate common cost allocation setting as a characteristic function form game. So 

we proceed our discussion using the model in AokH 19971 

In section 1, we describe the notations and the model. We also explain the computational 

procedure of the nucleolus in Section 1. Because this procedure applies to other nucleolus 

that we examine in the later section. 

In Section 2, we focus on the nucleolus based on the propensity to disrupt. We describe 

the nucleolus based on the least core in Section 3. 

In section 4, we analyze the properties of the various nucleolus described in the previous 

1 ) Aoki[ 1997] surveys the literature in which Shapley value and the nucleolus are applied to common 

cost allocation. 

2 ) See Aoki[ 1996al. 

3 ) Aoki[ 1988] examines the properties of the nucleolus based on the propensity to disrupt and the least 

core. 
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sections. We will use the numerical examples in our analysis to make our discussion 

concrete. 

In the last section, we summarize the results of our analysis. We refer to the recent 

studies that treat with the nucleolus in common cost allocation and show the direction of 

the future study. 

1. Preliminary and the Computation of the Nucleolus 

1.1. Preliminary: Definition and Model 

The purpose of this paper is to apply the cooperative game solutions, which are similar to 

the nucleolus, to common cost allocation and explore the properties of these solutions. We 

formulate common cost allocation setting as a characteristic function form game. 

Aoki[ 1997] specifies the cases where we can estimate the characteristic function properly 

in common cost allocation. So, we proceed our analysis with the model described in 

Aoki[1997]. We give an outline of this model here.4 ) 

N is the set of the players. We call N a grand coalition. As the players are rational 

decision makers, the game players in common cost allocation are the managers of divisions 

or departments in a firm. It is assumed implicitly that every player prefers to lower 

allocated cost. The subset of N is referred to as a coalition. It is supposed that coalitions can 

make decisions regarding the acquisition and utilization of the service. For example, 

players can decide whether they get the necessary service internally or externally. It is 

assumed that a coalition makes its decision as if it were one player. 

q is the demand of the service, so qi is the player i's demand of the service. C(q) is the 

cost function of the service. When C(q) is a concave function, we can estimate the 

characteristic function as the maximin value of the benefit arising from the joint acquisition 

of the service. The cost function C(q) includes the information about the cost of the 

external service when there are some external vendors providing the necessary service in 

the market. 

A characteristic function is a mapping 21l-dimensional space into the real number R. The 

value of the characteristic function v(S) is the worth that a coalition Scan receive.S) It is 

rational to assume that the assumption of transferable utilities is satisfied in common cost 

allocation. It is convenient to define the characteristic function as the cost saving game in 

common cost allocation. We will proceed our analysis with the following characteristic 

function. 

4 ) See Aoki[ 1997) as to the full detail of the model used in this article. 

5 ) See Owen[ 1995)(p.213) as to the definition of the characteristic function. 
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v(0) = 0 

v(S)=L C(q)-C(L q) 
iES iES 

(1) 
VSCN 

Let cf; (v)( ERn) be an arbitrary cooperative game solution and cf;/ v) be player i's value of 

the game, namely, the allocated amount of benefit to player i. We may represent eh( v) as Xi 

for abbreviation. As the characteristic function in (1) is O-normalized, v({ i}) = O( Vi EN). 

Let ai be the allocatedcost to player i. We can represent the relationship between ai and 

cf;/v). 

a· = C(q.) - ,/, .(v) 
I I 't' I 

(2) 

(2) says that the allocated cost to player i (a) is automatically determined if we get the 

value of the game ( cf;i (v)). We will often refer to the value of the game in the successive 

analysis. It should be noted that specifying cf;i (v) is equivalent to specifying ai' 

When the cost function is a concave function, the characteristic function defined in (1) 

become a convex game. 6) A convex game is a class of the game proposed by Shapley 

[1971 J. The definition of this game is :7) 

v(S) + v(T):::;; (Sn T) + v(SU T) VSCN (3) 

(3) is equivalent to (4).8) This formula gives us interpretation for a convex game. 

v(S U { i } ) - v(S) :::;; v( T U { i } ) - v( T) ViEN and VSCTCN- {i} (4) 

It is clear that (4) means the scale of economy. We will examine the case where there 

comes some cost saving from the joint acquisition of the service. 

We will use the following notation instead of the summation for abbreviation. x is a n­

dimensional vector. 

xes) =L x· 
iES I 

VSCN 

We define the excess using (5). 

e(S,x) = v(S) - xeS) 

6) See Aoki[1997](p.19). 

7 ) Shapley[ 1971 ](p.12). 

8 ) Shapley[ 1971 ](p.13). 

(5) 

(6) 



We can regard the excess as the dissatisfaction of coalition S with the allocation x.9 ) 

Aoki[} 996a] interpret the meaning of the nucleolus in the bargaining process for allocating 

common cost. It is assumed that players bargain each other about the allocation of the 

common cost in Aoki[ I996aL Though we will not mention the bargaining process 

explicitly in the later sections, we proceed our discussion under this assumption. 

1.2. The Computation Procedure of the Nucleolus 

We can compute the nucleolus by solving a series of the linear programming problems. 10) 

The cooperative game solutions, which are similar to the nucleolus, are obtained by solving 

the linear and non-linear programming problems. We describe the computational procedures 

of the nucleolus here. 

The first stage problem for obtaining the nucleolus is the following. 

Problem 1 
mm r 

s.t. e(S,x) :s:: r 

x(N) = (N) 

x ~O 

YSCN 

The first constraints of the above problem means that r is the maximum excess. 

Therefore, the maximum excess is minimized in Problem 1. 

If some allocation x is determined uniquely in the first stage problem, this result is the 

nucleolus. But if not, we have to solve the following second problem. 

Problem 2 
min r 

s. t. e(S,x) :s:: r 

x =XI 

x ~ 0 

Xl is the set of the solutions in Problem 1. Let rl be the optimal value of r in Problem 1. 

B I is the collection of coalition S such that e(S,x)=rl for x E Xl. If we obtain a unique 

solution in Problem 2, this is the nucleolus. If not, it is necessary to solve the third stage 

9) See Aoki[1996a](pp.6-7) as to the definition and the meaning of the excess. 

10) See Kohlberg[1972l. 
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problem. This process continues until we get the unique solution. As the nucleolus is a 

single point solution and exists in any case, we can obtain the nucleolus certainly after 

finite repetition. II) 

The nucleolus based on the propensity to disrupt and the nucleolus based on the least 

core are obtained by solving a series of the linear and non-linear programming problems. 

These problems are different from the linear programming problem for the nucleolus in 

their constraints. It is necessary to solve these problem repeatedly to get these nucleolus. 

Though we will show only the first stage problem in the later sections, it should be noted 

that repetitive computational procedures are necessary to get these solutions. 

We regard the excess e(S,x) as the measure of the dissatisfaction in the nucleolus. The 

nucleolus is the solution in which the maximum dissatisfaction is minimized as much as 

possible. But it is not always true that the coalition S has the excess e(S,x) as the 

dissatisfaction with the allocation x. Rather, it is natural to think that there are many kind of 

the dissatisfaction measure in common cost allocation. Gately[1974] call the excess e(S,x) 

as the dissatisfaction measure into question. The successive studies are inspired by 

Gately[19741. 

2. The Nucleolus Based on Propensity to Disrupt 

2.1. The Equal Propensity to Disrupt Solution 

Gately[1974] proposes "propensity to disrupt" has the dissatisfaction measure with the 

allocation. Gately[1974] considers the case where player i does not accept some 

allocation. 12) Gately[1974] compares the two kind of opportunity losses in this case. One is 

the loss that is incurred to player i and the other is the loss that is incurred to coalition N - {i} . 

If player i is not satisfactory to some allocation x, player i will not accept this allocation 

and depart from the grand coalition N. Player i has to obtain the necessary service 

individually in this case. When player i does not accept the allocation x, the opportunity 

loss of player i is : 

(7) 

If player i departs from the grand coalition, coalition N - {i} has to get the necessary 

service by itself. The opportunity loss of coalition N - {i} in this case is : 

11) The number of the iteration is at most n -/ in n-person game. 

12) Thereafter, the allocation means the imputation, namely, Xi ~v ({ i }) and X (N ) = v (N) for all x. 



x(N - {i}) - v(N - {i}) (8) 

If the amount (8) is larger than the amount (7), player i thinks that coalition N - {i} 

receives too much. Hence, player i demands that coalition N - {i} should transform some 

amount to player i. Gately[ 1974] considers that the ratio of (7) to (8) is desirable 

dissatisfaction measure. This is the propensity to disrupt of player i. Let di(x) be the 

propensity to disrupt of player i with the allocation x. 

d.(x) = x(N - (i}) - v(N - (i}) 
1 Xi - v( {i}) 

(9) 

It is clear that d/x) becomes larger when (8) is relatively larger than (7).13) Therefore, 

players will willingly accept the allocation x in which the value of (9) is small. 

Gately[ 1974] proposes the solution in which every player's propensity to disrupt is identical 

to determine a unique solution. We refer to this solution as "equal propensity to disrupt 

solution." 

We can calculate the equal propensity to disrupt solution of n-person game by solving the 

following simultaneous equations. 

Problem 3 

d 1 (x) = d/x) 

x(N) = v(N) 

(j = 2,.·· ,n) 

As there are n equations for n unknown variable Xi in Problem 3, we can get a unique 

solution except the special case where there exist some dependent equations in Problem 3. 

The bargaining rule of the nucleolus, "minimizing the maximum dissatisfaction," is not 

fully incorporated into the equal propensity to disrupt solution because the propensity to 

disrupt (9) is defined on each player. 14) This solution is similar to the prekernel rather than 

the nucleolus. IS) 

We can calculate the equal propensity to disrupt solution more easily than the nucleolus 

since the former is the solution of the simultaneous equations while the latter is the solution 

13) It is assumed that the value of (7) and (8) are positive in (9). If the core of the game not empty and 

the core does not consist of a single point, there exists some x such that (9) is positive. This 

assumption is valid in our model. 

14) As the propensity to disrupt is equal for all players, "minimizing the maximum dissatisfaction" is 

realized in each player. But the propensity to disrupt of coalition is not considered in the equal 

propensity to disrupt solution. 

15) See Aoki[1996a](p.7) as to the definition of the prekernel. 
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of the linear programming problem. This is an advantage of the equal propensity to disrupt 

solution over the nucleolus. 

If players of the game regard the propensity to disrupt as the dissatisfaction measure and 

accept the equal propensity to disrupt as the bargaining rule in the bargaining processes for 

allocating common cost, this solution may give us a promising allocation. Although the 

solution proposed by Gately[ 1974] is different from the nucleolus in detail, we have 

examined Gately's solution here because this solution has desired properties described 

above and give the foundation to the later studies. 

2.2. The Disruption Nucleolus (Llttlechild and Vaidya) 

Littlechild and Vaidya[1976] points out the following difficulties of the propensity to 

disrupt proposed by Gately [ 1974]. 16) 

1. It does not specify which size of coalition is the "relevant" one. 

2. The solution corresponding to coalition of size k is independent of characteristic 

function values for all coalitions except those size of k, n - k and n. 

3. Although the equal propensity to disrupt solution for k-person coalitions 

minimizes the maximum propensity to disrupt over all coalitions of size k, there 

may be coalitions of some other size with a higher propensity to disrupt. 

4. An equal propensity to disrupt solution may not be in the core of the game. 

The first three difficulties arise from the definition of the propensity to disrupt. That is to 

say, Gately's propensity to disrupt is defined on each player not on the coalition. Littlechild 

and Vaidya[ 1976] generalizes the propensity to disrupt to overcome the above three 

difficulties. They propose the new propensity to disrupt that is defined on the coalition. 17) 

x(N - S) - v(N - S) 
d.(S x) = ------

I ' xeS) - v(S) 
V SCN(S f. N,0) (10) 

The denominator of (10) denotes the opportunity loss of coalition S when coalition S 

does not accept the allocation x. The numerator of (10) is the opportunity loss of coalition 

N- S when coalition S departs from the grand coalition N. It is clear that (10) becomes 

larger as the dissatisfaction of coalition S grows. 

16) See Littlechild and Vaidya[ 1976](p.153). 

17) The fourth difficulty cannot be resolved even if we adopt (10). 



We can define the disruption nucleolus using (10). It is necessary to denote the 

preliminary notations to define the disruption nucleolus. 

q(x)( E R211_2) is a vector whose elements are d l (S,X) and the elements of this vector are in 

decreasing order. The operator -l compares any two term using lexicographic order. 

Namely, if q(x) -l q(y), there exists some positive integer p such that qi (X)=qi (y) for i<p and 

q/x) <q/y ). We can define:j as not r-. We define the disruption nucleolus dn as follows. 

dn = {xEX: q(x):j q(y), for all yEX} (II) 

We can compute the disruption nucleolus by solving a series of the minimization 

problems. As the propensity to disrupt (IO) is not linear, we have to solve the following 

non-linear programming problem to obtain the disruption nucleolus. 

Problem 4 

min r 

S.t. i(S,x) ~ r Y SCN(S -:f:. N,0) 

x(N) = v(N) 

X:20 

We can convert Problem 4 into the linear programming problem with the variable 

transformation of r. Hence, if we solve the resulting linear programming problem, we can 

get the disruption nucleolus. nn If we cannot find a unique solution in Problem 4, we have 

to solve the next stage problems repeatedly until we obtain a unique solution. 

2.3. The Disruption Nucleolus (Charnes and Seiford) 

While Littlechild and Vaidya[ 1976] proposes a new propensity to disrupt, they refer to 

the difficulties of their propensity to disrupt. The following difficulties may arise when the 

core of the game is empty or the core of the game is not sufficiently large even if the core 

exists. 19 ) 

• d l (S,X) may be infinite . 

.. dl(S,x) may be negative . 

• d l (S,X) may be artificially positive. 

18) See Littlechild and Vaidya[ 1976](pp.154-156) as to the computational procedure of the disruption 

nucleolus. 

19) See Littlechild and Vaidya[1976](pp.154). 
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Our model is represented by the convex game. It is well-known that the core exists and 

the range of core is relatively large in the convex game. So, we can ignore the above 

difficulties in our analysis. 

Charnes and Seiford[ 1978] points out that the above difficulties arise from the fact that 

d 1(S,x) is the ratio of the opportunity loss (7) and (8). Charnes and Seiford[1978] proposes 

the new propensity to disrupt in which the dissatisfaction of coalition S with allocation x is 

the weighted difference between (7) and (8). Their propensity to disrupt is represented by: 

a(N - S){x(N - S) - v(N - S)} - P(S){x(S) - v(S)} (12) 

The coefficients a(N - S) and P (S) are suitably chosen weight or "normalization" 

factors. 20) Charnes and Seiford selects the reciprocal of the coalitional size as the weight. 

The propensity to disrupt in this case is : 

d2(S,x) = x(N - S) - v(N - S) _ xeS) - v(S) (13) 
n-s s 

n - sand s are the number of the coalition N - Sand S, i.e., IN - SI=n - sand ISI=s. We can 

easily see from (13) that the opportunity loss per person is computed for coalition N - Sand 

S, and the propensity to disrupt is the difference between the opportunity loss per person for 

N - Sand S. We can obtain (14) using the relationship x(N - S)=v(N) - xeS) in (13). 

d2(S,x) = 1_1_ + ~ll s(v(N)-v(N-S))+(n-s)v(S) - xeS) I (14) 
n-s s n 

We define the first term in the second parenthesis of (14) as w(S). 

w(S) = seveN) - v(N - S)) + (n - s)v(S) 

n 
(15) 

w(S) is a convex combination of v(S) and v(N) - v(N - S). It means that the value of w(S) 

is in the interval between v(S) and v(N) - v(N - S). If we regard w(S) as a game, the second 

parenthesis of (14) is w(S) - xeS) and this is the excess of game w(S). Therefore, we can 

interpret (14) as the dissatisfaction of coalition S with allocation x in game w. 

As v(N) - v(N - S) ~ v(S) in a convex game, 21) w(S) ~ v(S). This means that players 

bargain with other players about the allocation based on the amount w(S) that is greater or 

equal to v(S). 

If the allocation x is in the core, the following relationship holds. 

20) See Charnes and Seiford[1978](p.38). 

21) If a game is super-additive, v (N) ~ v (N-S) + v (S). 



v(S) ~ xes) ~ v(N) - v(N - S) (16) 

(16) means that v(N) - v(N - S) is the upper limit that coalition S can obtain. Hence, we 

can interpret the propensity to disrupt proposed by Charnes and Seiford[ 1978] as the 

dissatisfaction measure considering into the maximum amount that coalition S can obtain. 

We can define the disruption nucleolus using (13). Since the procedure is the same as the 

disruption nucleolus of Littlechild and Vaidya[ 1976], we omit the definition of the 

disruption nucleolus of Charnes and Seiford[ 1974]. 

We can obtain the disruption nucleolus of Chames and Seiford[ 1978] by solving a series 

of the linear programming problem. If we replace d1(S,x) in Problem 4 with d 2(S,x), we can 

get the linear programming problems for the disruption nucleolus in this subsection. So, we 

also omit this problem here. 

3. The Nucleolus Based on the Least Core 

3.1. The Least Core 

Young et al.[l980] extends the least core and proposes two nucleoli. One is the weak 

nucleolus and the other is the proportional nucleolus. Since these nucleoli are derived from 

the least core, we explain the least core briefly here. 

We can obtain the least core by solving the following linear programming problem. 

Problem 5 

mm E 

s.t. x(S) ;;:::: v(S) - E 

x(N) = v(N) 

x;;::::O 

YSCN 

It is clear that Problem 5 is equivalent to Problem 1, which is the first stage problem for 

the nucleolus. We give another interpretation to Problem 5 by noticing the difference 

between the first constraints in Problem 1 and Problem 5. 

The first constraint in Problem 1 defines the maximum excess. The right hand of the first 

constraint in Problem 5 is v(S) - E. When the core exists, it is clear that E 2:: 0 since xeS) ~ 

v(S). If the value of E is sufficiently large, the core does not exist. Hence, if we increase E 

in v(S) - E, it means narrowing the range of the core. Therefore, the optimal value of E in 

Problem 5 is the upper limit for the existence of the core. 

Problem 5 suggests the possibility that we can define the new nucleolus by changing the 

first constrains. If we replace E in Problem 5 with the product of E and the number of 

coalition S, we can define the weak nucleolus. If we replace E in Problem 5 with the 
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product of E and the worth of coalition S, we can define the proportional nucleolus. 

3.2. The Weak Nucleolus 

The dissatisfaction measure in the nucleolus, the excess, is e(S,x)=v(S) - xeS). The size of 

the coalition, the number of the coalition, is not considered in excess. We incorporate the 

size of the coalition into the dissatisfaction measure on the weak nucleolus. The dissatisfaction 

of coalition S with x is : 

Y SCN(S -=f. N,0) (17) 

(17) means that the excess is divided by the size of coalition S. We can obtain the weak 

nucleolus by solving the following linear programming problem. 

Problem 6 

mzn E 

s.t. xeS) ::2: v(S) - S'E 

x(N) = v(N) 

x::2:0 

YSCN 

Problem 6 is the first stage problem for the weak nucleolus. If the optimal solution in 

Problem 6 is not unique, we need to solve the next stage problems. These procedures 

continue until we get a unique solution. 

3.3. The Proportional Nucleolus 

The weak nucleolus is derived from dividing the excess by the number of the coalition. 

In the proportional nucleolus, we consider the dissatisfaction measure in which the excess 

is divided by the worth of the coalition v(S). The dissatisfaction measure in the proportional 

nucleolus is defined by : 

2 1 e (S,x) = - {v(S) - x(S)} 
v(S) 

Y SCN(S =1= N,0 ) (18) 

v(S) is the value that coalition S can get by itself. This value grows as the service demand 

of the coalition increases in the convex game. So, we interpret v(S) as the scale of the 

coalition. Hence, we regard (18) as the measure in which the scale of the coalition is 

considered. 

If we adopt (18) as the dissatisfaction measure, there is a difficulty such that we cannot 

define e2(S,x) for v(S)=O. But this difficulty is not serious and we can avoid this difficulty 



by returning to the original problem, i.e., Problem S. (18) in an interpretation for our 

analysis. The constraint is xeS) ~ v(S) - £. v(S) in the original problem. This constraint is 

equivalent to xeS) ~ 0 for v(S)=O. 

The proportional nucleolus is computed by the following linear programming problem. 

Problem 7 

min E 

s. t. xeS) ~ v(S) - E' v(S) 

x(N) = v(N) 

x~O 

YSCN 

Problem 7 is the first stage problem. If we cannot find a unique solution in this problem, 

we have to solve the next stage problems until we get the unique solution. 

4. The Analysis With Numerical Example 

4.1. Numerical Example 

We have described five cooperative game solutions that are similar to the nucleolus in 

Section 2 and 3. We examine the properties of these solutions using the numerical 

examples. We denote the numerical examples in our analysis here. 

We use a 4-person game example. We suppose the following piece-wise linear cost 

function C(q) here. It is clear that C(q) is a concave function. Namely, 

1

40q 0::;: q < IS 

C(q) = 20q+300 IS::;: q < 30 

10q+600 30::;: q 

While a player or a coalition whose demand of the service is less than IS cannot receive 

the benefit arising from the joint acquisition of the service, a player or a coalition whose 

demand of the service is more than 30 can achieve more cost saving. We analyze four cases 

described in Table 1. 
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qi Case 1 Case 2 Case 3 Case 4 
q[ 5 5 5 15 
q2 10 10 20 20 
q, 20 12 25 25 
q4 25 30 30 30 

Total 60 57 80 90 

Table I : The Service Demand of the Departments 

The cost of the service for coalition S is C(S)=C(q(S» and this is depicted in Table 2. 

C(S) Case 1 Case 2 Case 3 Case 4 

C({I}) 200 200 200 600 
C( {2}) 400 400 700 700 
C({3 }) 700 480 800 800 
C( {4}) 800 '900 900 900 

C({ 1,2}) 600 600 800 950 
C( {1,3}) 800 640 900 1,000 
C({ 1,4}) 900 950 950 1,050 
C( {2,3}) 900 740 1,050 1,050 
C( {2,4}) 950 1,000 1,100 1,100 
C( {3,4}) 1,050 1,020 1,150 1,150 

C({ 1,2,3}) 950 840 1,100 1,200 
C({ 1,2,4}) 1,000 1,050 1,150 1,250 
C({1,3,4}) 1,100 1,070 1,200 1,300 
C( {2,3,4}) 1,150 1,120 1,350 1,350 

C({ 1,2,3,4}) 1,200 1,170 1,400 1,500 

Table 2 : The Cost of the Service in Coalition S 

We can estimate the characteristic function from Table 2 and (1). We omit v( {i}) in Table 

3. because v( {i} )=0 for all i in our example. 

v(S) Case 1 Case 2 Case 3 Case 4 

v( { 1,2}) 0 0 100 350 
v({ 1,3}) 100 40 100 400 
v( { 1,4}) 100 150 150 450 
v( {2,3}) 200 140 450 450 
v( {2,4}) 250 300 500 500 
v( {3,4}) 450 360 550 550 

v( { 1,2,3}) 350 240 600 900 
v( { 1,2,4}) 400 450 650 950 
v( { 1,3,4}) 600 510 700 1,000 
v( {2,3,4}) 750 660 1,050 1,050 

v({ 1,2,3,4}) 900 810 1,200 1,500 

Table 3 : Characteristic Function v(S) 

Consider the capability of each player for cost saving from the data of Table 3. v(N)-
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v(N - {i}) is the marginal increment by player i's participation in the coalition 

N - {i}. The maximum cost saving is achieved when the grand coalition N is formed in our 

example. So, we can regard v(N) - v(N - {i}) as the capability of player i. 22 ) The player 

whose value of v(N) - v(N - {i}) is high is in the advantageous position in the bargaining 

for the allocation of common cost and can expect a favorable allocation. The value of 

v(N) - v(N - {i}) in our four cases are summarized as Table 4. 

Player Case I Case 2 Case 3 Case 4 
1 150 150 150 450 
2 300 300 500 500 
3 500 360 550 550 
4 550 570 600 600 

Table 4 : v(N) - v(N - {i}) 

The values of v(N) - v(N - {i}) in Table 4 are in the interval between 150 and 600. We 

refer to the player whose value of v(N) - v(N - {i}) is in the 100 's, 300 's, and 500's as the 

low contribution player, the middle contribution player, and the high contribution player, 

respecti vel y. 

There is one low contribution player, one middle contribution player, and two high 

contribution players in Case 1. This case corresponds to the situation where the 

departments have various demand of the service. Case 1 may be general in this sense. 

There is one low contribution player, two middle contribution players, and one high 

contribution player in Case 2. While the departments have various demand of the service, 

this case is different from Case 1 in the number of the middle contribution and the high 

contribution players. 

There is one low contribution player and three high contribution player in Case 3. The 

position of player 1 is extremely weak in the bargaining process for allocating common 

cost. So this may be the extreme case. 

Case 4 describes the situation where the contribution of each player is not different 

extremely. So, the position of each player is almost the same in the bargaining process. 

4.2. Results of Our Examples 

The equal propensity to disrupt is the same as the disruption nucleolus of Littlechild and 

Vaidya[I976] in our four cases.23) Hence, we wil1 only show the results of Littlechild and 

22) It is clear from (4) that v(N) - dN - (i l )~v(S) - v(S - (i l). So v(N) - v(N - (i l) is the maximum capacity 

of player i for cost saving. 

23) As d I(S,x)=r for all IS I = 3, the optimal value in Problem 4 is determined by d l (S,x)(lSI=3) and 

x(N)=v(N). By dl(S,x)=IJdI(N-S,X), died =d/x) =d,(x)=d/x). It means that the equal propensity to 

disrupt is equal to the disruption nucleolus. 
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Vaidya[1976]. We summarize the nucleolus(Nu), the disruption nucleolus (Littlechild and 

Vaidya[l976l; DNI), the disruption nucleolus (Charnes and Seiford[l978]; DN2), the weak 

nucleolus (WN), and the proportional nucleolus(PN) as Table 5 to 8. We compute these 

solutions using Mathematica. 24 ) The results described below are the allocated amount of 

the cost saving. Refer to Appendix 2 as to the allocated cost. 

Player Nu DNI DN2 WN PN 
1 75.00 90.00 168.75 37.50 0.00 
2 150.00 180.00 206.25 137.50 100.00 
3 312.50 300.00 256.25 337.50 366.67 
4 362.50 330.00 268.75 387.50 433.33 

Table 5 : Allocation of the Cost Saving in Case 1 

Player Nu DNI DN2 WN PN 
1 75.00 88.04 153.75 37.50 0.00 
2 150.00 176.09 191.25 147.50 121.50 
3 187.50 211.30 206.25 207.50 202.50 
4 397.50 334.57 258.75 417.50 486.00 

Table 6 : Allocation of the Cost Saving in Case 2 

Player Nu DNI DN2 WN PN 

1 75.00 100.00 225.00 37.50 0.00 
2 325.00 333.33 312.50 337.50 338.46 
3 375.00 366.67 325.00 387.50 400.00 
4 425.00 400.00 337.50 437.50 461.54 

Table 7 : Allocation of the Cost Saving in Case 3 

Player Nu DNI DN2 WN PN 
1 300.00 321.43 356.25 300.00 288.46 
2 350.00 357.14 368.75 350.00 346.15 
3 400.00 392.86 381.25 400.00 403.85 
4 450.00 428.57 393.75 450.00 461.54 

Table 8 : Allocation of the Cost Saving in Case 4 

4.3. Examination of our Examples 

4.3.1 The Nucleolus 

The nucleolus does not give the maximum or the minimum solution of the five solutions 

in every case. In other words, the nucleolus does not give the extreme solution. Hence, we 

24) Mathematica is the trademark of Wolfram Research Corporation. See Appendix 1 as to the linear 

programming problems for the nucleolus in Case 1. 



regard the nucleolus as the standard solution among five nucleoli. 

We note the allocated amount of player I in Case 1,2, and 3 to clarify the properties of 

the nucleolus. Though the service demand of player I is the same in Case I and Case 2, 

v(N) in Case I is larger than v(N) in Case 2. But the allocated cost to player 1 remains the 

same in Case I and Case 2. 

The service demand of player I is the same in Case I and Case 3. Though v(N) in Case 3 

is far larger than v(N) in Case I, the allocated amount to player I is unchanged. We should 

notice that the allocated amount player 2 is the same in Case 1 and Case 2 although v(N) in 

Case I is larger than v(N) in Case 2. 

Player 1 is the low contribution player in Case 1,2, and 3. Though player 2 is the middle 

contribution player in Case I and 2, the contribution of player 2 is relatively lower than that 

of player 3 and 4 in Case I and 2. 

We conclude from the above discussion that the nucleolus may not reflect the change of 

v(N) in the allocation properly. Especially, we should pay attention to the case where the 

relatively low contribution players exist because there is a possibility that the low 

contribution player may not receive any benefit in the nucleolus allocation. 

4.3.2. The Disruption Nucleolus (Littlechild and Vaidya{ 1976J;DN 1) 

We can avoid the difficulty of the nucleolus by the use of DNI. We notice the allocation 

to player 1 in Case I, 2, and 3. We can easily see that the allocated amount to player I 

decreases as v(N) decreases and the allocated amount to player I increases as v(N) 

Increases. 

The contribution of player I and 2 is lower than that of player 3 and 4 in Case 1. DNI 

allocates more benefit to player I and 2 than the nucleolus in Case I. Player I, 2, and 3 are 

relatively low contribution player in Case 2. DNI gives more benefit to these players than 

the nucleolus in Case 2. This applies to the allocation to player I in Case 3. 

From the above analysis, we see that DNI is likely to allocate more benefit to relatively 

low contribution players. If we want to reflect the change of the total cost saving in the 

allocation, DNI is a promising solution. 

4.3.3. The Disruption Nucleolus (Charnes and Se~ford{ 1978J;DN2) 

We easily see that DN2 gives the equalized amount to all players in every cases. We 

notice the allocation to player I and 4 to clarify this. 

Player I is the low contribution player and player 4 is the high contribution player in 

every case. DN2 provides us with the allocation in which the difference between the 

allocated amount of player I and that of player 4 is minimum in every case. Hence, the 

contribution of each player is not rellected sensitively in DN2. Player 1 is the only low 

contribution player in Case 3. No cost is allocated to player 1 and player 1 receives some 
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subsidy from others in Case 3(See Table 11 in Appendix 2). As player I uses the service 

actually in this case, DN2 may give other players unfair feeling. 

We should not use DN2 in case where extremely low contribution players exist. But 

DN2 is a desirable allocation scheme in the situation where common cost is allocated 

irrespecti ve of the service usage. 

4.3.4. The Weak Nucleolus(WN} 

As the allocation to player 1 in Case 1, 2, and 3 is the same, WN has the similar property 

to the nucleolus. We note Case 1, 2, and 3 to clarify the difference between WN and the 

nucleolus. 

Player 1 is the low contribution player and player 3 and 4 are the high contribution player 

in these cases. WN allocation to player 1 is the half of the nucleolus allocation in these 

cases. WN gives player 3 and 4 larger amount than the nucleolus allocation. 

, Player 2 is the relatively low contribution player in Case I and 2. WN gives player 2 

smaller amount than the nucleolus in these cases. Player 2 is the high contribution player in 

Case 3. WN gives player 2 larger amount than the nucleolus in Case 3. 

From the above discussion, WN is likely to allocate more amount to high contribution 

player and is likely to allocate less amount to the low contribution player. In other words, 

WN is more sensitive to player's contribution than the nucleolus. 

Notice the allocated amount of player 2 in Case 1 and 2, we can find a difficulty of WN. 

v(N) in Case 2 is smaller than v(N) in Case 1. It means that the cost saving in Case 2 is 

smaller than the cost saving in Case 1. Furthermore, the service demand of player 2 

remains the same in Case 1 and 2. But the allocated amount of player 2 in Case 2 is 

increased compared with Case 1. This denotes that WN allocation is likely to receive the 

changes of other player's service usage. 

WN is the allocation scheme that is sensitive to the player's contribution. We should 

recognize that WN allocation is too sensitive to the contribution of the players in some 

cases when we use WN as an allocation scheme. 

4.3.5. The Proportional Nucleolus(PN} 

PN has the similar properties as WN. Namely, PN allocates more amount to the high 

contribution player and allocates less amount to the low contribution player. Hence, PN has 

the same difficulty as WN. If we notice the allocation to player 2 in Case 1 and 2, we can 

see that PN is more sensitive to the contribution of players than WN. 

The WN allocation to player 1 in Case 1, 2, and 3 is zero. It means that PN may allocate 

no cost saving to the low contribution player in some cases. Hence, PN gives unfair 

feelings in the situation where extremely low contribution players exists. 

PN is likely to receive the changes of the service demand drastically. For example, the 



difference of player l's service demand between Case 1 and Case 4 is 10. While the 

allocated amount in Case 1 is zero, the allocated amount in Case 4 is 288.46. 

We consider the case where player l's service demand is 14 in Case 4. PN in this case is 

(254.65,547.24,405.12,462.99). Though the change of player l's service damned is only 

one, the change of the allocated amount is 33.81. This difference is significant. But we 

cannot find extreme change of other player's allocated amount. 

From the above analysis, we conclude that PN is similar to WN and is the most sensitive 

to player's contribution of five solutions examined here. 

Conclusions 

We have focused on the five cooperative game solutions, which are similar to the 

nucleolus, and examined the properties of these solutions using numerical examples. It 

should be noted that the results obtained in this article apply to the situations where the cost 

function of the service concave, i.e., the scale of economy works. 

We can indifferently uses these five solutions in the case where the service demand of 

each department is almost the same(Case 4). We should consider the followings when we 

select the allocation scheme in this case . 

• What is the dissatisfaction measure of the department with the allocation? 

• What is the desired properties of the allocation scheme? 

If we can specify the above two points, the nucleoli examined here will give the 

satisfactory allocation to the users of the service in this case. 

We encounter the some difficulties in the situation where the service demand of each 

departments is various. For example, the disruption nucleolus(Charnes and Seiford[ 1978]) 

in Case 3 allocate no cost to player 1 and subsidize player 1. Case 3 is the situation where 

player l's demand of the service is extremely low. Though the nucleolus, the weak 

nucleolus, and the proportional nucleolus have desirable properties, they may not reflect the 

change of v(S) in their allocation properly in some cases. As the disruption 

nucleolus(Littlechild and Vaidya[ 1976]) does not have serious difficulties in our model, this 

solution is promising allocation scheme in a convex game. 

Recently, Thomas[ 1992] proposes MTPD(Minimum Total Propensity to Disrupt) as a 

common cost allocation scheme. This method consists of two steps. First, we solve the first 

stage problem for the nucleolus(Problem 1). Next, we solve the problem in which the total 

propensity to disrupt is minimized given the solution of the first stage problem. 

If we use MTPD method, we can obtain the solution in the second iteration. Generally 

speaking, we have to solve the linear programming problems repeatedly to compute the 

nucleolus. The number of iterations is at most n - 1 for n-person game. This applies to 
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other nucleolus. Therefore, MTPD method is desirable in terms of the simplicity of the 

computation. The simplicity of the computation may be necessary in practice. But it is 

difficult to justify MTPD method theoretically because this method is a simple compromise 

of the nucleolus and the propensity to disrupt. Carter and Walker[ 1996] criticizes MTPD 

method for the lack of consistency. 

When we apply the nucleoli examined here to practice, the complexity of the 

computational procedures is a problem. We have to resolve this problem to use these 

solutions in practice. For example, Franklin and Kochenberger[ 1994] computes MTPD 

solution using the spread sheet software. It may be necessary to devise a simple 

computational procedures for these cooperative game solutions. 

If we apply these nucleoli to practice, we must specify the dissatisfaction measure in 

common cost allocation and examine the properties of this measure. The best approach to 

this problem is the field study or the questionnaire research. But these research are difficult, 

costly, and time consuming. Thomas[ 1988] uses a laboratory experiment to find the 

properties of the allocation schemes. His approach may be suggestive to our purpose. 

Received: August 10,1996 
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Appendix 

Appendix 1 : The Linear Programming Problems for the Nucleolus 

We only show the linear programming problems for the nucleolus in Case 1. 

The computational procedures explained here apply to other solutions. 

The first stage problem is: 

mrn r 

s.t. 

xi+r 2 0 U = 1,2,3,4) 

x 1+x2+r 2 0 

X1+X3+r 2 100 

x1+x4+r 2 100 

x2+x3+r 2 200 

x2+x4+r 2 250 

x3+x4+r 2 450 

x 1+x2+x3+r 2 350 

x1+x2+x4+r 2 400 

x 1+x3+x4+r 2 600 

x2+x3+x4+r 2 750 

x 1+x2+x3+x4 = 900 

x· I 2 0 U= 1,2,3,4) 

The optimal value of the first stage problem is r= -75. The optimal solution of 

this problem is x1=75, x2=225, x3=425, and x4=175. Therefore, B 1={ {I}, 

{2,3,4} } and XI={(xJ, Xl> X3, X4) I x1=75, X2+X3+X4=825}. 

The second stage problem is: 

min r 

s.t. 

xi+r 2 0 U = 2,3,4) 

x2+r 2 0 

x3+r 2 100 

x4+r 2 100 



X2+X3+r ~ 275 

x2+x4+r ~ 325 

x3+x4+r ~ 525 

x2+x3+r ~ 350 

x2+x4+r ~ 400 

x3+x4+ r ~ 600 

x2+x3+x4 = 825 

x· I ~ 0 (i = 2,3,4) 

The optimal value of the second stage problem is r= - 75. The optimal 

solution of this problem is x2=150, x3=350, and x4=325. Therefore, B2={ {2}, 

{3,4} } and X2={ (Xl ,x2, x3, X4) I xl=75, X2= 150, X3+X4=675}. 

The third stage problem is: 

mm r 

S.t. 

xi+r ~ 150 (i =3,4) 

x3+r ~ 175 

x4+r ~ 175 

x3+r ~ 200 

x4+r ~ 250 

x3+x4+r ~ 600 

x3+r ~ 275 

x4+r ~ 325 

x3+x4 = 675 

x· I ~ 0 (i = 3,4) 

The optimal value of the second stage problem is r= - 37.5. The optimal 

solution of this problem is x3=312.5, and x4=362.S. We can obtain the nucleolus 

in Case 1 from the above three problems. The nucleolus of this case is 

x=(75,150,312.5,362.5). 
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Appendix 2 : The Allocated Cost of our Examples 

We can obtain the allocated cost to each department from the results of Table 

5 to 8 using (2). 

Player Nu DNI DN2 WN PN 
I 125.00 110.00 31.25 162.50 200.00 
2 250.00 220.00 193.75 262.50 300.00 
3 387.50 400.00 443.75 362.50 333.33 
4 437.50 470.00 531.25 412.50 366.67 

Table 9 : Allocated Cost in Case 1 

Player Nu DNI DN2 WN PN 
I 125.00 111.96 46.25 162.50 200.00 
2 250.00 233.91 208.75 252.50 278.50 
3 292.50 268.70 273.75 272.50 277.50 
4 502.50 565.43 641.25 482.50 414.00 

Table 10 : Allocated Cost in Case 2 

Player Nu DNI DN2 WN PN 

I 125.00 100.00 -25.00 162.50 200.00 
2 375.00 366.67 387.50 362.50 361.54 
3 425.00 433.33 475.00 412.50 400.00 
4 475.00 500.00 562.50 462.50 438.46 

Table 11 : Allocated Cost in Case 3 

Player Nu DNI DN2 WN PN 
I 300.00 278.57 243.75 300.00 311.54 
2 350.00 342.86 331.25 350.00 353.85 
3 400.00 407.14 418.75 400.00 396.15 
4 450.00 471.43 506.25 450.00 438.46 

Table 12 : Allocated Cost in Case 4 


