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Understanding Likelihood Functions for
Sample Selection Models

Hiroshi Murao *

The users of sample selection models such as the type II and I Tobit modes are likely
to have difficulties for understanding likelihood functions for these models. There are several
reasons behind it. First, resulting formulas look quite different depending on authors. Be-
side this point, it is possible to derive quite different variations. Without such knowledge the
users of the model wonder which one is right. Second, some likelihood functions are written
in abstract form and they are difficult to write in computer codes from the view point of
practitioners. And so on. We show that two theorems are important in order to understand
these likelihood functions. Once we understand how to apply these theorems in the context
of sample selection problem, we can easily derive these likelihood functions with some
variations. With such knowledge, we can easily modify the likelihood function of a standard

=gt
= (2009)

BT

specification based on our needs.

Such knowledge is also applied to more complicated

models including simultaneous equation systems and the like.

1. Introduction

Sample selection models such as the type
I and II Tobit modes have been widely
used in many fields of quantitative statistical
analysis including applied Econometrics. These
models are used in the context of "sample se-
lection problem" or "self-selectivity problem."
Suppose that data are missing on one or more
variables for some units in a sample. Using a
subset of a random sample because of missing
data faces to the sample selection problem if
the sample separation between missing data
and observed data is not random.

Suppose we are interested in estimating a
wage offer equation for married women, and
we get survey data from randomly selected
married women. We get missing data on
wage from non-working married women while
we get observed data on wage from working
married women. Using the set of observed data

on wage for estimating the wage offer equa-
tion faces to the sample selection problem
since the data set of working married women
only is not a random sample of the underling
population (i.e., married women). The usual
OLS estimation provides neither unbiased esti-
mation nor consistent estimation for the wage
offer equation. Here, married women make a
decision whether they work or not based on
their rational choice, i.e., the division between
working and non-working is based on a cer-
tain rule and it is endogenous. Thus, the set
of only working married women is not based
on random sampling with regard to the popu-
lation of married women.

Sample selection models such as the type
I and IT Tobit modes deal with this kind of
problem by modeling an endogenous selection
rule for the division of data. The result of se-
lection rule can be described by a binary vari-
able. For example, the binary variable takes
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the value of one if wage is observed while it
takes the value of zero if wage is not ob-
served. Then we can construct a binary re-
gression model for the selection rule in order
to deal with the self-selectivity problem. The
type II Tobit mode is based on such a binary
selection equation. The result of selection rule
might be described by a censored quantitative
variable. For example, the dependent variable
of the selection equation have positive values
of working hours for working women while
zero or missing value for the non-working
women. Then we can construct a censored re-
gression model for the selection rule in order
to deal with the self-selectivity problem. The
type II Tobit mode is based on such a cen-
sored selection mechanism.

The type I and I Tobit modes are often
estimated with the maximum likelihood method,
and their log likelihood functions can be
found in books including Wooldridge (2002,
p. 566), Gourieroux (2000, p.191), Maddala
(1983, p.266), and Dhrymes (1986, p.1612).
However, the users of these models might
have difficulties for understanding these authors'
likelihood functions. There are several reasons
behind it. First, resulting formulas look quite
different depending on authors. As we will
see, quite different variations are also possi-
ble. Without such knowledge the users of the
model wonder which one is right. Second,
some likelihood functions are written in ab-
stract form and they are difficult to write in
computer codes from the view point of practi-
tioners. Third, the resulting formulas are often
written with little explanation except some
authors including Wooldridge (2002, p. 566).

Beside difficulties of understanding, there is
another kind of problem. If a model specifica-
tion is different from the standard model
specification, then many practitioners includ-

ing myself might feel difficulties of how to
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modify the likelihood function. Thus, it is im-
portant to understand how these likelihood
functions are derived and the meanings for
the parts of these likelihood functions. With-
out suck knowledge, it is almost impossible to
modify them based on our needs.

This paper shows that there are two impor-
tant theorems to understand how to construct
the likelihood functions for sample selection
models with focusing on the type II Tobit
model. With this kind of knowledge, it is not
difficult to modify them based on our needs.

The rest of the paper is organized as fol-
Section 2 describes the type I Tobit
model with the standard model specification.

lows.

It introduces a popular formula of the likeli-
hood function for the type II Tobit model.
Section 3 shows two important theorems to
understand how to construct the likelihood
functions for sample selection models. De-
rived are two kinds of likelihood functions for
the type II Tobit model. Section 4 describes
the type I Tobit model with the standard
model specification. Two kinds of likelihood
functions are also derived for the type II

Tobit model. Section 5 considers a few mod-
els for program evaluation since one major
use of the sample selection models is in
evaluating the benefits of social programs.
Section 6 considers the general model of sam-
ple selection which covers all of the above
models. Section 7 concludes.

2. The Type I Tobit Model

The sample selection models deal with
"sample selection problem" or "self-selectivity
problem" by modeling an endogenous selec-
tion rule for the division of data. The results
of the selection rule could be binary outcomes
such as "working" and "not-working." The
type II Tobit mode is based on such a binary
selection mechanism for the division of data.



The type II Tobit mode has the following
standard specification:

v =xp +u (1a)
d =1[x,, +u, >0] (1b)

where 1[0] is the indicator function, which is

written as
y; =x,, +u, (2a)
J = 1 if y, >9 (2b)
0 otherwise

where y, is a latent variable. Equation (1a) is
called the main regression equation, and it de-
scribes how the quantitative dependent vari-
able y, is influenced by a vector of ex-
planatory variables x; and its error term .
Equation (1b) is called the selection equation
or the like, and it describes how a binary
variable d, which descries the separation of
values on y, into two regimes or groups, is
influenced by a vector of explanatory vari-
ables x, and its error term u,. We assume
(x,,d ) are always observed while y; is ob-
served only when dJd=1. Since many authors
of textbooks assume x, is always observed,
we also assume x, is always observed. This
means that the main regression equation is a
censored regression model. There is the fol-
lowing fact behind this assumption. Since the
selection equation is not typically a structure
equation, x, may contain all variables in x,.
Let y=(3,d)", x=(x,x,), and u=(u,u,). We
assume that « is independent of x, and u« fol-
lows a multivariate normal distribution with

mean zero and the variance-covariance matrix
>

2
u~N@©,x%), == 2| 5,20 3)
oy 1

As usual, Z is assumed to be a positive defi-
nite matrix, and the assumption var(u,)=1 is
made without loss of generality because 4 is
a binary variable. If o, =0, then there is no
sample selection problem, and f can be con-
sistently estimated by OLS with using the sub
data set of d=1.

Based on random sampling, i=1,23,---,n, a
log likelihood function for the type II Tobit
mode is given by

log L(B,%) =
Z IOg[l - (D[(_ Xy, By =007 (1,- x.pB )kl -0p0,° )%]]

+ Y log ¢[y;xﬂ] + Y log(o7) + Y loglo(-x, 8,)]
@

where ®(e) stands for the standard normal cu-
mulative distribution function, ¢#(e) stands for
the standard normal density function, ; de-
notes the summation for =1, and 2 de-
Note that

2 =2 . .. . . ..
(I-01;017) is positive since X is a positive

notes the summation for 4,=0.

definite matrix.

Due to the symmetry of the normal distri-
bution, we have 1-®(-z)=®(z) and ®(-z)=
1-®(z). Thus, the above log likelihood func-

tion can be written as

log L(3,%) =
Z IOgCD[(xzuBz +0,00 (v, — %,/ )kl -o,07" )_%]
4

+ Z log ¢[ythl'ﬂlj+ Z log(o;") +Zlog[1 -O(x,,5, )]

)

This kind of log likelihood function can be
found in Wooldridge (2002, p. 566), Gourieroux
(2000, p.191), Maddala (1983, p.266), and
Dhrymes (1986, p.1612) even though different
authors use different notations.

53



3. Understanding the Log Likelihood
Function for the Typell Tobit Model

There are two theorems to be mentioned for
understanding the likelihood function of the
type II Tobit model. The first theorem can
be found in any basic textbooks in Statistics.
Let f(w;,w;) be the join density function of
two random variables w, and w,, f(w,|w)
be the conditional density function of w, given
wy, and f (w;) be the marginal density func-
tion of w,’. Then we have

S wy)=F(wy w) x fw) = fOw[wy)x f(wy) (6)
The Bayes' rule can be written as

_ Sy [w)x f (wy)
Jmlwy) = T @)

The second theorem is related to the condi-
tional normal distribution and the partition of
matrix. Let w be a vector of normal random
variables with the mean « and the variance-
covariance matrix X, w, be any subset of
w, including a single variable, and w, be the
remaining variables. Partition the mean vector
# and the variance-covariance matrix >, so
that

4 Zy Z12}
M= and = ]
L‘j {221 Zy ( )

Then, the marginal distributions are also nor-

mal. In particular,
wy ~N(uy,Zy;) and wy ~N(uy,25) ©)

The condition distribution of w, given wj is

normal as well:

w, |w1 NN(ﬂz-lazzzq) (10)
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where ”2-]:/‘2+2212{11(W1_ﬂ1)and Z22.12222_2“2121_11212-

We consider the second theorem in terms
of a case close to the type II Tobit model.
Let w, and w, be scalar variables, and let
T, =var(w)=of, T, =var(w,)=1, and £, =%,
=cov(w;,w,)=0y, . The conditional distribution

of w, given w, is
Wy [ Wy~ N(tye.Z500) (11D

where tya= th+ Ulzo'fz(wl_ﬂl)and z322.1:1‘U122‘3"1_2>0‘

Since the selection equation is the probit
model, we review the basic knowledge about
the probit model with the following specifica-
tion:

d=1[x,8, +uy >0], u;~N(O]D) 12)
For d=1or x,8, +u, >0, the probability func-
tion f(dlx,) is written as

f(d|x2) =P = 1|x2) = P(y; > O’xz): P(u2 >-x,5 ’xz)

= [pu,)du, =1-0(x,4,) = O(x,3,)
-5, (1 3)

For d=0 or

function f(d|x,) is written as

x,B8, +u, <0 , the probability

f(d|x2) =P(d= 0‘3‘2) = P(y; < 0|x2): P(”z < —x2ﬁ2|x2)

x5
= [#)du, = D(-x,8,) = 1-D(x,8,)
- (14)

Thus, the probability function for the probit
model is given by

f(d|x2 )= P(dlxz) = [1 - O(-x, 5, )]d [@(—x2ﬁ2 )]l_d
= [(D(xzﬁz )]d [1 - O(x, 5, )]Hi
(15

Now we go back to the type II Tobit
model and derive its likelihood function. We

can use the joint density f(y,,d|x) when both




d=1.
On the other hand, we use the marginal den-

y, and d are observed, ie., when
sity f(d|x) when d is observed and y, is not
observed, i.e., when d=0. To find the joint

density f(y,,d
ther

x) when 4=1, we can use ei-

/(ypd)=f(d|y1)Xf(y1)0rf(ylsd)=f(y1|d)><f(d)

We use the former case so that we derive the
log likelihood function found in the books
mentioned in the above. From the second

theorem we know

y;’(yl 2 %) ~ Ny 5001)

Hya =X +Z2121_1l 0 —x B)

=x,5 Jro'1251_20/1 - 8)
Zpna=Zp _22121_11212:1_""122‘7172 >0
For d=1, the density of 4 given (y,,x) is

calculated as

P(dzly],x):P(y; >0y,,x)

= P((J’; = )30 > ~HhaaZsia .V15x) =1- CD[_ HauZra

:l—cb[(—xZﬁZ—a.za{z(yl—xlﬂ[)xl 0'1220-{2) }

The marginal density f(y,|x) for d=1 is

written as
_L »n-—xh
e (16)

Putting these pieces together yields

P(d =1

V%)% f (0 |x) :{1 - (D|:(_ X, - 0’120'[2 -x4 ))
2 Y3 n—xph 1
(1_6120-1 ) :|:|>(¢[ o, ]X;] (17)

For d=0, all we know is the density f(d|x)
and it is given by

P(d =0[x) = P(uy <—x,,) =D(-x,,) (18)

Putting these pieces together yields the fol-
lowing likelihood function.

LBD) =[]/ Gund )
=11 [P@, =1y, x)x £ )] x [P, = o))

= H Hl - ED[(— Xy o= 61,072 (1= X, 8, )Xl oo )7% i|}:|d
[¢[ Yy = Xuh J o7 .
a-l

The log likelihood function is written as

x [(D(— x5 )]HI’

(19)

log L(8,%) =
2103{1 (D[ xz:ﬂz 0,0, (J/u xl:ﬂl)kl 0—122O_I_2 ]}

+ Zlog v{y = ubh ]+ Zlog(a(‘) + Zlog[CD(—xz,ﬁz)]
' ' (20)

Let's see how the log likelihood function
looks different if f(y;,d)=f(3|d)x f(d) is used.

1.0 =T [/ Oed )
- H [fld, =1.x)x P(d, =1x,)]
= f[|:¢|:(y1/ -xp —o,(1-x,, )XO-IZ - 0-122 )%}

X(O'1 0'12) :| [1 q:'( x21ﬁ2)] X[ ( xzzﬂz)]lid'
(21)

x[P(d, = 0x)] ™

Note that (67 - o5) is positive since the vari-
ance-covariance matrix X is a positive defi-
nite matrix. The log likelihood function is

written as
log L(ﬂ’ E) = Z 10g¢[(y“ - xliﬂl -0y (1 - xz;ﬂz ))(O'Jz - 0'122 )7% ]
d=1

+210g|:(0'12_0'|z) :|+210g[1 (1) xz:ﬂz +210g[d) xz,ﬂz]
d=1 d,=0

(22)
Notice that the last two elements in the right
hand side of (22) constitute the log likelihood
function for the standard probit model. Using

this property, the above log likelihood func-

tion can be written as

log L(8,%) = Zlogf(yh|d x;)+ 21ogf(d |x ) (23)

d;=0,1
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where f(y;|d;,x;) is the density function of

the normal distribution
N[{xuﬁl +op(-x, )b (a7 — oy )] (24)

evaluated at Vi, and f(d, \x,») is the standard

probit density, and gu;,l denotes the summation
for both d=0 and d=1.

4. The Type Il Tobit Model

The type II Tobit mode has a censured de-
pendent variable, say y,, rather than a binary
dependent variable, for the selection equation.
The type I Tobit mode has the following
standard model specification:

(252)
(25b)

n=xp +u

vy =max(0,x,5, +u,)

Using a latent variable y; the selection equa-
tion (25b) can be written as

Vo =%, +u, (262)
V= {yz it »>0 (26b)
0 otherwise

As before we assume (x,,y,) as well as x, are
always observed while y,is observed only
when y,> 0. For example, wage y, is observed
only when working hours y, are positive. No-
tice that the selection equation is the simple
Tobit model. The remaining part is the same
Let ¥=01.¥2)"
x=(x,x,)" ,and u=(u,u,). We assume that u

as before with var(u,)=0o;.

is independent of x, and « follows a multi-
variate normal distribution:

2

u~N(0,%), E:[O—l 0-122}’ o #0 27)
On 0,

Since the selection equation is the simple

Tobit model, we review the basic knowledge

about the simple Tobit model with the follow-

ing specification:
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yy =max(0,x, 8, +u,), u, ~N(0,67)  (28)

For regime switching between y,> 0 and
y,= 0, it is convenient to use a binary vari-
able J such that d=1 when y,>0 and d=0
when y,>0. For y, =0 or equivalently u, <
-x,8, , the density f(»,|x,) is given by

Py, =0|x2)=P(y§ So|x2)=P(u2 S—x2ﬁ2|x2)
= P(”_Z <_ %5 |x2j _ (D( x2 5 j (29)
g, g,y o,

For »,>0, the density /(»,|x,) is written as

Yy — X8
f(JQ‘xz)—_?{ 2 0_22 2] (30)

Putting these pieces together yields a likeli-
hood function for the simple Tobit model.

xZi):f[[f(yz,lxz,)]“'x[P(yz,=0|x2,>]l‘”'

R R xZ,ﬂz] [_Mﬂl_d'
1;1{02[ o) 03 (€2))

Its log likelihood function is given by

log 2{p,03)= 3 log q{wj
d;=1 (o3}
+ Z log(c3') + zmg{ ( %5 H o)

d,=0

L(/fz,o%):ﬁf(yﬂ

Now we go back to the type II Tobit
likelihood function.
When both ¥, and y, are observable, or equiva-

model and derive its
lently when y,> 0, we can use the joint den-
sity /(»1,¥2). On the other hand, when ¥, is
observable and Vi is not observable, or equiva-
lently when »>=0 all we know is the den-
sity of ¥,. To find the joint density f(»,¥,)
when Y>>0, we can use either

FOLy)=f (s ’yl)x f(yl)orf(Y1aJ’2):f(y1|)’2)><f(y2)

First, we use the former case. We know



FOuwa )= Foalyrx x fon )

b4 Ix ~N(y ,Zy) where #=x5 and Z; :o_lz

fofe ):ic{y‘ x'ﬁ‘]
9

1

¥ ‘(yl 2% )~ N(#pe,Z554) Where

= Bt 2 20 (7= 1, 8) = 2yt 0,07 (713, 8)
and Zy, =Zy ‘22121_11212 =03 —opo; >0
Falyor ) = Ziky x A 0 — 120)]

=2 - - 0n07 0 - p)od - o) ]
x (0'22 -oho,” )7%

For y,=0, all we know is the marginal den-

sity of »,. Thus we can get

Fulx ) =P <0x )= P(y; —x,8, <—x,8.[x )
= P(u, S—xzﬂzlx )—P[“Z<_xzﬁ2’x ]_cp(_xzﬂz]
o, o,

0,

Putting these pieces together yields the fol-
lowing likelihood function:

108, = [ 70wy = [ Guoyalnl <[Py =0}
i= i=1
=TT @alyixx fonfedl < [P, <o)} ™
i=1
=]_[H(ym =X Bai ‘0'120'1_20’1, ‘%ﬂﬂxf"z2 _‘712201_2)%}
i=1 . o
bt -oor) | o g2 o } Jof 2]
(33)
Its log likelihood function is given by
log L(B,%) =
Z log ¢|:()’z,7 x’_’iﬁZiio-llo-liz(yhixlzﬁl )Xo_zzio_lzzc_l-z)-%}
d,=1
22 _2Y3 Yu —xufy
+ ;log[(o-2 oL, ) j|+ d’Z:l]og ¢( - ]

+42:1 log[af' ]+ dzz;)log da[— —x:ﬂz ] (34)

Let's use f(.y)=fOn|y)xf(v,) to see
how the likelihood function looks different.

18,9 =] [Foulymx < £l x [P0y, =0
i=l

n

:np{()’n - x5 ’012552(}’21 ’xz‘ﬁz)xo'f *Ulzzo'iz)%}

= 1-d,
(ID[— x5y H
0

e [

i
X

(35)
Its log likelihood function is given by
log L(B,%) =
glogqﬁ[(vl, 5 =003 0 =)o - otor )|
+dzl[( —050; T }‘;low[yz’;ij”ﬂzj
X
+zl°g[62 ]+zl°g[[ Zﬂﬂ (36)

Notice that the last three elements in the right
hand side of (36) constitute the log likelihood
function of the standard Tobit model. This
property is also shown in Wooldridge (2002,
p. 573).
log likelihood function for observation i:

He shows the following formula of

log Z,(B.2)=d, xlog f(y|yy.x,) +log f(vylx) (37)

where f(yy;[y,.x;) is the density function of
the normal distribution

N[{xuﬂl + 01, (Vy _x2iﬂ2 (0'1 0'120'2 )] (38)

evaluated at y;;, /(y5|x;) is the standard cen-
sored Tobit density.

5. Models for Program Evaluation

One major use of the sample selection models
is in evaluating the benefits of social pro-
grams. Keeping this in mind, we consider the

following program evaluation model:
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y=xp +u (39a)
V2 =%, +uy (39b)
d =1x; 5 +u; >0] (39¢c)

The selection equation (39c) can be written as
Y3 = X35 +us

d :{1 if
0

In the context of program evaluation, the se-

(40a)
¥3 >0 (40b)

otherwise

lection equation is usually called as the par-
ticipation decision function or the like. As
before (x;,d ) are always observed. With re-
gard to the main regression equation, (x, ;)
are observed when the j-th agent participates
a social program, or equivalently when 4 =1,
and (x,,y,) are observed when 4 =0 . Thus,
the observed y is defined as

i d =1
y = (41)
Yy if d =0

For this context it is very possible to use the
same variables for x, and x,. Let

y=y2.d)', x=(xx,,%;)", and u = (U, ,u,,us)
We assume that z is independent of x, and

u follows a multivariate normal distribution:

11

b 12
u ~N@©,2), 2=|%,,
T

13
23 |» 213= L3 % 0, Ty =Z5,#0

33 (42)

2

M ™M ™M
M ™M ™

31 32

Here we use matrix notation such that X, =
=var(u)) =0}, ,,=var(u,) =03, .= var(u,) = o;
=1, £,;=325=cov(u, ,u;) =05, and so forth even
though the elements are scalars. The use of
this kind of notation gives us clear patterns
for the following arguments.

For g=1, we can utilize the followings:
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Fond)=P@=1y.x)x £ [x) = Py}

x)x f(fx)
7 ’x ~N(y,,Z,;) where i =x,5

For =i o2 Oy - )

P3| 5% )~ N(atza s Egsa)) where

M3 = X333 +E312f11(Y1*x1 B)and ¥y, 2233—2312f11213

Y1sx)

N _1 N _1
P(y; >0‘)’1 ,x )= P[ZBZ-I (3 = #30) > =L 33 fhaa
1 B 1
=1- (D|:_ 2331'1/13.1:| =1- CD|:(Z33 - Z312111213) :

(_ x3f85 - Zalzill(h -x By ))}

_1 -1

Note that 3 7 =(67)? =o7' >0 and =5, =Z,, — 25,
20E; =01 —ohort >0, For d=0, we can util-
ize the followings:

f20d )= P <Oyyx )x fOfr )

Y |x ~N(uy,Zy) where p, =x,p,

Foabe ) =23k 5 20 - 18)

V3|02 )~ Nt E50) where

Hr = %385 +E525(y, —x,6,) and

Ty =1y *23222223

J’2’xJ

P(Y; < 0‘.V2 X )= P[EE-z (y; M) S _2;33.2/13.1

= (D[_ 2;33.2/”3.1]

= (I’[(En - 232255223 )7 (7 x3ﬂ3 - Z:322; (y2 X, ﬂz ))]
Using these properties, it is not difficult to

construct the following likelihood function for

the program evaluation model:

18,9 =[ [l o) x[radifx)] ™
i=1

=T T1P@ =y x0% £l x [P =00y ) x £ )]
i=1
n 1 4,

:HHI—@{(&;ZNE[}Z”) 2(‘xaiﬂs_zmzﬂl(J’lz—xuﬂl)ﬂH
l=17l N .

{an X¢(an (62" _xluﬁl)ﬂ

N 1-d;
X ‘D|:(233 *23225223) ! (*xa/}s ’23222(/"2, X35, ))ﬂ

{ 1 1 -4,
>{Zzz2 X¢(Ezzz(J’2,*x2,ﬁ2)ﬂ (43)



Next, we consider the case in which the se-
lection equation is the simple Tobit mode:

(44a)
(44b)

Y3 = maX(O, X305 + us)
~N(0,Z53)
where Z,, =var(u;)=0;. This selection equa-
tion can be written as

Y3 =x385 + s (452)
ooyt 23>0
} 0 otherwise (45b)

For example, we can think of j, as the

amount of loan. The observed » is defined as

y :{yl if
Y

For y; >0, we can utilize the followings:

V3 >0 (46)

otherwise

FGuse) = F0nlpx )% fOy )
Y |x ~N(,Zy) where g =xp

fonor=zf xfmiton-x)

V3 ’(Jﬁ 2 X) ~N(tt301 Z30) Where f130= %385 + 23,51 (- x, )
and Iy, =1y *2312;11213

fs ’yl X )= (233
X ¢[(233 - Z:312"1711213)7% (Y3 —x3f5 - 23121’11 O -x B ))}

_2312f11213 )7

For y,> 0, we can utilize the followings:

FG23}) = Py =0y, ) % £0s[1) = P <0y )% £33 )
y2|x ~N(uy, L) where py=x,5,

TSR ARY LY R

3|02 )~ Nty 230) where

tsay = X385 + 23,25 (3, —x,f,) and

DI SRS T 35 I

P(y; SO’y2,x )= P(ZEQ(J’; _#3-2)3_2;35-2/‘3-2’}’23’5 )
= (D[— E;;.zﬂm]

= CD[(E,B - 23222223)’5 (’ X8 - 23222 (3, —x,, ))]

it is not difficult to
construct the following likelihood function for

Using these properties,

the program evaluation model:

x, )]lfd,

18,9 =] [Urouysleol <[y
i=1
=TTl xx s <[P = a5 f )] ™
i=1

= ﬁ{(zzs —23121’11213 )_% x ¢{(233 _2312f11213>_%

i=1

q,
(y3i - x5 By, _2312;11(Y11 _Xnﬂl))ﬂ

x[ziﬁ e —xl,ﬂ])]r

1-d,
[ Z33-Zpk 22273) (xsx/}ai‘23225(}’21—x21ﬁ2))ﬂ

I-d,
Zg3 ><¢ Z22 i - xz,ﬁz)ﬂ @7)

6. The General Model

The general structure of the type of model we
shall consider in this section is as follows. L
latent variables, y* =(y;,y5,---,y;) , are defined

by a simultaneous equation system:

4y -4, X=¢ (482)
£~N(0,Z,) (48b)
where X is the matrix of exogenous vari-

ables, and ¢ is a vector of L error terms.
The observations on these variables are parti-
tioned into K regimes or categories. M observ-
Y=:Yases V),

for each regime as know. There is a mapping

able variables, are obtained
between the latent variables y* and the ob-
servable variables ) for each regime:

v, :Cky: for k=12-,K (49)

where C, is a mapping matrix of known con-
stants for regime k. Notice that some latent
variables may not contribute the definition of
the partitions or, for that matter, they may not
be observable. This general model covers a
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great number of cases.

For example, if L=M =] and K=2, we
recover dichotomous models such as the probit
model:

yolb i y >0
0 otherwise

and the simple Tobit model:

e y* if y* >0
0 otherwise

If L=K=2 and M=1, we have the type
II Tobit mode:

p = yl* if y; >0
! 0 otherwise

For [=K =2 and M=1, a disequilibrium

model is written as

y:{yf it 2>y
Ya if N1 2Z»

where y, and y, are the quantities demanded
and supplied, respectively. If L=M=K=2,
we have the type I Tobit mode:

_{yf if ¥y >0 ¥, >0
=

vroif
and y,=
0 otherwise : {

0 otherwise

With £= 3 and M= K= 2, the previous pro-
gram evaluation model with the probit selec-

tion equation can be written as

yoif
bal ={ .

*
Y otherwise

y;>0

g b it ¥ >0
0 otherwise

The previous program evaluation model with
the censored selection equation can be written

as
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it y3>0

= {y]*
Y2 otherwise
3 >0

. if
yy = {J’3
0 otherwise

Before determining the likelihood function
for the general model, we must first find the
distribution of the latent variables. Then we
can derive the distribution of the observable
endogenous variables. To find the distribution
of the latent variables, we rewrite the system
in the reduced form:

y =A4HX +47'e=BX +u (50)

where B=47'4,and u=4"¢. The distribution

of u is written as
u~N(0,%) (51)

where = 47"2,(47"). The likelihood function
for observation ; in terms of the reduced-form

parameters is given by
L(B.3)=(2x) 5|3 = exp[—%(y: By 2y - By, }} (52)

where ‘2‘ is the determinant of X, which is
positive. This can be written as

LB =[5 3¢z} - Bx,) (53)

where ¢(s) stands for the multivariate standard
normal density function, and * denotes the
Cholesky decomposition matrix of X, which
has the property: (}:%)’Z% -3y. Using B=4,"4,
and Z=4,"2,_(4"), the following elements can
be rewrite as

()/l* 7BX,)’Z_I(’V: 7BX!)
(v -4y x, ) [, T ) - 47 4, x)
:(Y: _Al_]Aer),[AIZZI(Al )'] ()/: _Al_]AZXi)

(a3~ (97 - ayx,) (54)



and

5 = |4z, ] =

1y 1TE
V=5

1

(55)

where 4 |is the absolute value of the Jacobian
of the transformation from & to y*. Thus we
can write the likelihood function for observa-
tion ; as

L(4,4,,%,) =|4"%,

x¢[(A 2,47V (v AIAX)}

><¢[z (4,9 - 4,x,) (56)

Based on random sampling, the log likelihood

function for all observations is written as

log (4, , 4,,%;)= Y log L,(4 , 4,.%,) (57)

With regard to the log likelihood function
for the structure parameters in the simultane-
ous equation framework, we can refer to
equation (8.5.19) in Hayashi (2000, p.531),
equation (12.80) in Davidson and MacKinnon
(2004, p.533), the equation after (16-33) in
Greene (2000, p. 694), equation (7.40)
Arellano (2003, p.138), and equation (4.24) in
Hausman (1983).

Using the mapping y=C,y, for k=12-K,
we can get the likelihood function in terms of
the observable variables. This idea is clear,
but it is cumbersome to write it down in de-
tails.

For this reason, we consider a more simple
case for the system of multiple equations. Let
K=2 and L=M . For L=M,6 we means that
each latent variable yj- corresponds to a par-
ticular observable variable y; for j=12,--,L.
We recall the reduced form:

y =BX +u, u~N(0,3)

This system is partitioned as follows:

Y =) X=(X.X,), B=(B.B,),
z z

u = ,u,y), Z—{ 1 12:|
Ty Iy (58)

The vector of the observable variables is also
partitioned as y=(»,,¥,) and ), is assumed to
be a single variable. In particular, J; is as-
sumed to be a censored variable such that

* . * >0
v, :{)’z if V2 (59)

0 otherwise

The rest of the endogenous variables y, are
assumed to be observed always for simplicity.
Of course, it is possible to modify this as-
sumption so that y, is observed only when
v,> 0. However, such a case is already con-
sidered in the section of the type Il Tobit
mode, and it is not interesting to do the same
kind of excise again.

When both y, and y, are observed, i.e., when
2> 0 the joint density function f(y,,y,) for
observation i is given by (53) with V=

For y,> 0 we can also use
FOLYD=FOp) = FOalpDx fG) (60)

For this case we know

)’1‘X ~N(u,Zy)) where u =BX,
Foxy=[2] 7 % ¢(2;f » fBIXI))

h‘()’l s X)~ N(ltye1,Z550) Where
the =B, X, +2, 21 (3, - B X,) and

-1
Zypa =Zy —ZyZ 2

oz 0 )]

)2 12;11212) ’

(Y2 -B,X, _2212;:(Y1 - BIXI)):|

S|y X )=[Z00

:‘Zzz —2, 02, X¢|:(Zzz
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For y,=0 or equivalently y, <0, we can use

FOTYX ) =POS <0y, X)X f(n [X) (61)
where yl*:yl. For this case we know

yl‘X ~N(u,Zy) where u =B X,

1 n
f()ﬁ’X )= ‘211‘ ’ X¢(2|12 W _Ble))
y; ’(Jﬁ X )~ N(tp,2p,) where
Haa =By X, + 2,371 (3 — B X,) and

-1
Ly =2y — Ly E3 %),

P(y; < O‘yl ,X)= P(E;za (2 = t20) € =233 tru V1> X)
= CI{* Z;E-]/‘Zal:|
= (1{(222 - 22121_11212)7 (=B, X, - Z2121_11 O - BiX, ))}
Putting these pieces together yields the fol-

lowing likelihood function for the above sys-
tem of multiple equations:

13,5 = 11042 OF <[]
Tl s X0 0 X 0F

X [P(yzr= OylnXi)xf(.Vu‘Xz)]]_d'

1
3

= H|:|222 - E212'1_11212 T x ¢[(222 - E2121_112"12)
i=1
4,
(yZI -B,X, _EZIEI_II . - B1X|,)):|:|
_L | d
X |:’211| "X ¢(21—15(y1; -BX, )):|
1-d,

X |:®|:(2227 22121711212 )7% (_ BzXz, - 22121’11 (.Vu_ Bl X]i)):|j|

X Uz“ﬁ x ¢(EI? (n - BX, >)} (62)

7. Conclusions

In order to understand likelihood functions for
sample selection models such as the type II
and Il Tobit modes, we show that two theorems
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are fundamentally important. Once we under-
stand how to apply these theorems in the con-
text of likelihood functions for sample selection
models, we can derive likelihood functions
easily with some variations. With such knowl-
edge, we can modify the likelihood function
for a standard specification easily based on
our needs. Such knowledge is also applied to
more complicated models including simultane-
ous equation systems and the like.
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Notes

1) We define x as a row vector and £ as a col-
umn vector so that xf is the inner product of
x and S .

2) We may use rigorous notation such as
Sz(w,wy), fz-l(W2|W1)7 fiw), and f2(w;) . How-
ever, this kind of notation becomes cumbersome
in the course of our arguments. For notational
simplicity, fi(ww,), fouu(w|w), fi(w), and
f>(wy) are written as f(w;,wy), f(wy|w), f (W),

and f (w,), respectively.
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