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A Practical Way of Executing the F Test in the
Framework of Multiple Linear Regression Equations

Hiroshi Murao *

In linear regression analysis, hypothesis testing of linear restrictions on regression coeffi-
cients is usually done with the F test, provided that some assumptions are met. It is easy
to carry out the F test in the case of single linear regression equation. However, it is not
easy for the case of multiple linear regression equations. If we make the straight forward
application of textbook knowledge to the F test in the framework of multiple linear regres-
sion equations, we face the problems of dealing with huge matrixes. Even though it depends
on the numbers of regression coefficients and so on, the problems become serial enough to
think about another way of performing the test. For example, if the number of regression
coefficients is 822, then we need to write computer codes to specify the elements of a sym-
metric matrix in size of 822x822, and hence the number of the elements to be computed
is 822X (82+1)/2=338, 253. It is just a small part of the whole task, and similar difficulties
or problems occur here and there in the process of executing the F test. Nobody wants to
write computer codes for such huge and tedious work. Also, we might face to the capacity
limitation of statistical software or computer for dealing with huge matrices.

This paper shows a practical way of executing the F test in the framework of multiple
linear regression equations. It is based on the technique of residual regressions. In this way
we don't face to the problems of dealing with huge metrics. Our example shows that the F
test can be carried out using a symmetric matrix in 10X10 rather 822x822. This kind of
dimensional deduction makes us easy to perform the F test.

. popular. The less popularity reflects difficul-
1. Introduction . . .

ties or problems associated with the use of

In linear regression analysis,

hypothesis matrices. Some researchers might feel difficul-

testing of linear restrictions on regression co-
efficients is usually done with the F test, pro-
vided that some assumptions including the
normality of error terms are met. For the case
of single linear regression equation, the F test
is easy to carry out and popular, reflecting the
fact that a test procedure without the use of
matrices is available.

On the other hand, for the case of multiple
linear regression equations, the F test involves

the use of matrices and seems to be less

ties for writing computer codes to deal with
matrices. We face to more serious difficulties
or problems if we deal with huge matrices.
For example, if the number of regression co-
efficients in the system is 800, then the
straight forward application of textbook knowl-
edge involves the use of the variance-covariance
matrix in size of 800x800. This means that
we need to write computer codes to specify
each element of the symmetric matrix in 800
%800, and hence the number of elements to
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be computed is 800 (800+1) /2=320, 400. This
is just a small part of the whole task. Similar
difficulties or problems occur here and there
in the process of executing the F test. Nobody
wants to write computer codes for such huge
and tedious work. Also, we might face to the
capacity limitation of statistical software or
computer due to the use of huge matrices.

There should be a way to avoid these prob-
lems. This paper shows a practical way of
executing the F test in the framework of mul-
tiple linear regression equations. It is based
on the technique of residual regression. For
our example case, we need to specify each
element of the variance-covariance matrix in
10x10, and hence the number of elements to
be computed is 10% (10+1)/2=55. The dimen-
sional deduction, say from 800x800 to 10X
10, makes us easy to perform the F test.

The rest of the paper is organized as fol-
lows. Section 2 introduces our example model
in concrete context. Section 3 describes our
estimation procedure for the model, which is
closely related to our test hypotheses in Sec-
tion 4. Section 4 states our test hypotheses
which can be done with the F test. Section 5
reviews theoretical knowledge about the F test
in the framework of multiple linear regression
equations. Section 6 describes a practical
method of how to execute the F test using the
technique of residual regressions. Section 7
provides computational aspects of our residual
regressions. Section 8 shows the results of the
F tests for our example case. Section 9 con-
cludes.

2. Our Example of the System of Multiple
Linear Regression Equations

In order to make our concern clear in con-
crete context, we introduce a panel vector
autoregression (VAR) model developed by
Iwata and Murao (2007 ) for evaluating the
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effectiveness of the International Monetary
Fund (IMF) lending programs. First we pro-
vide brief background information of the
model, and then we show the model in de-
tails.

Developing countries often face to external
payment problems rooted in underlying
macroeconomic disequilibrium. Such imbal-
ances typically show us that the country's out-
put growth is low, inflation rate is high, and
current account deficit is large. As a member
of the IMF, the country may ask the IMF for
financial assistance. The IMF lending program
is two folds: loan and advice. The IMF's ad-
"IMF

conditionality." Accepting the IMF conditionality

vice for the country is called as
is a key to make successive arrangements for
loan.

There are a quite large number of empirical
literatures that attempt to evaluate the effec-
tiveness of the IMF lending programs. Previ-
ous studies show mixed results. For example,
one group shows negative or zero impacts of
the IMF lending programs on the country's
output growth while the other group shows
positive impacts. Beside such results, a prob-
lem of previous studies is that they don't pro-
vide a dynamic feature of evaluation over the
wide range of time horizon. Another problem
is that previous studies attempt to estimate only
the total effect of the IMF lending programs.

With regard to the IMF lending programs,
we need to deal with a statistical problem
called as "self-selection problem" or "sample
selection problem." The program participation
by a country is a product of interactions be-
tween the desire of the country for financial
help and the IMF's willingness to lend, which
in turns are related to the country's underlying
macroeconomic situations. In this sense it is
no doubt that the program participation is
endogenously determined. Ignoring such



endogeneity, the usual OLS estimation pro-
vides neither unbiased estimation nor consis-
tent estimation. In order to fix this kind of
problem, we can utilize sample selection mod-
els such as the type II and II Tobit models.
Some estimation procedures are also devel-
oped for correcting sample selection bias.
Heckman (1976) developed a popular two-step
estimation procedure for correcting sample se-
lection bias and his procedure provides con-
With
hypothesis test of sample selection bias in

sistent  estimation. regard to the
censored regression models, Vella (1992) sug-
gested that the test can be done with the
usual t test using a modified linear regression
Wooldridge (1998) showed that

Vella's procedure also solves the sample se-

equation.

lection problem.

Considering the problems of previous ap-
proaches as well as the sample selection prob-
lem, Iwata and Murao (2007) have developed
a new approach for evaluating the IMF lend-
ing programs. Unlike previous approaches, it
is based on a VAR model with regime
switching so that it provides a dynamic fea-
ture of evaluation over the wide range of time
horizon. Unlike previous approaches, it pro-
vides a way to estimate not only the total ef-
fect of IMF programs, but also the loan effect
and the policy advice effect. This kind of
separation is often very important in policy
discussion.

Our VAR model consists of three groups of
equations. The first two groups of equations
describe the behavior of what we call the pol-
icy variables and the target variables, while
the third equation describes the selection
mechanism for the IMF loan program.

The policy variables are a set of policy in-
struments that the government can control
through its monetary, fiscal and exchange rate
policies. The target variables are the country's

macroeconomic performance variables such as
output growth, inflation, and the balance of
payments. The third equation mimics the
IMF's

whether a given country in a given period is

selection criterion that determines
"in" or "out" of the IMF program.

As pointed out previously, the IMF pro-
gram has two major aspects: the loan provi-
sion and the policy advice. To distinguish the
two different channels through which the IMF
program possibly operates, we make the fol-
lowing specification. Since the policy advice
often aims at a systematic change in the pat-
tern of the policy reaction of the government,
the policy equation is assumed to switch be-
tween two regimes: in-program and out-
program.

To formally introduce our VAR model, we
define the following variables.

P __

Y. an m”x1 vector of policy variables

in country / in period ¢

y, = an m'x1 vector of target variables in
country i in period #

d,= a program dummy taking on the
value 1 or 0 depending on the IMF
program is in effect in country i in
period ¢

L, =the amount of the IMF loan to coun-
try i in period ¢.

Let y, =[y},y’/], which is an mx1 vector

with m=m"+m’. Then the structural model for

y, and y] is given by

P _ _Pd Pd Pd P
Allyit =a,; +Ay1 Yiia +"'+Aypy,',z—p +&,
(1a)

T _.T P AT
Apy, =2, +ApY, tALY, o+ (1b)
T T T T
ALY, tagl, e tay L g,

for d=1,0, where A

m™<m" and m"™<m" matrices, AI;/‘.{ and AyTj are

P P
Ay and A are mtXm’,

m”xm, m"<m matrices of regression coefficients
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for j=1....,p, and aj; is an m"*1 vector of
,p. The

first equation above is a set of policy reaction

regression coefficients for ;=0,. ..
functions that switch between two regimes:
in-program (d=1) and out-program (d=0).
The second equation describes each target
variable as a function of contemporaneous
policy variables, the amount of IMF loan, and
all lagged variables. Note that the contempo-
rancous target variables and the IMF loan
variables are excluded from the policy equa-
tion (la), while the contemporaneous policy
variables and the IMF loan variables are in-
cluded in the target equation (1b). These
points of specification are based on highly
standardized facts even though we don't ex-
plain in detail since they are not related to
our concern in this paper.

We now turn to the selection mechanism.
We need to consider the endogeneity of the
program participation, as pointed out previ-
ously. This mechanism is usually character-
ized by a probit model. That is, the program
participation (d=0or1) is formulated as a
function of underlying macroeconomic and
other variables. However, the amount of loan
(L,) is observable and the IMF program
dummy (d,) is 1 only when L, is positive. A
more efficient way to model the selection
process is, therefore, to use a Tobit model.
Let L, be the potential loan amount implied
by the IMF standardized formula, which can
be observed only when L) is positive. We
then postulate that the selection process is
governed by

L:t =w; "0+, 2)

where w!~! is a vector of historical records
on the target, policy and other variables. The
actual observed loan L, and the IMF program
dummy d, are given by
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L =LJd. and

it it

d,=1(L,>0) (3

Rewriting (la) and (1b) yields

P Pd Pd Pd P
Vi =b; +By1yi,t—1 +'“+Bypyi,t—p +u; (4a)

yﬁ = biT + Blzyg + B;yz‘,m (4b)

T T T T
+---+Bypyi,,_p +b,,L, +---+prLl.,,_p +u,

where b =A"! a/, B =A" | A" bl=A")
a,B,=A,)A,,,B =A,, Al for j=1,...,p,
and b{/. =A, a{j for j=0,...,p. The error
term v, in (2) is assumed to be correlated
with the shocks to the system u, =[u’’ u’']
We can write the error terms u, and v,

jointly as:

=
Il
<
>
IS
[SEUN
=
]
s
[l

Te, (5)

where &, ~iid(0,1) is a vector of structural
shocks. The term 8,-Lt stands for an exogenous
shock to the IMF loan. The zero restrictions
on matrix I' in (5) imply that y, is not af-
fected contemporaneously by this shock. This
assumption simply reflects the notion that the
effect of the loan would not be materialized
immediately. This obviously does not rule out
the possibility that the shock will have influ-
ence on all variables in y, with delay. On the
other hand, the IMF loan decision is affected
by all contemporaneous exogenous shocks to

all variables in y, .
3. Estimation

We can write the likelihood function of the
model and maximize it with respect to its

parameters to get the maximum likelihood



estimates. We do not follow this approach,
however, because it does not work well with
a large number of parameters. The number of
parameters is around 900 including the pa-
rameters in the variance-covariance matrix for
our panel VAR analysis.

Instead of using the maximum likelihood
method, we employ the recursive estimation
procedure based on the partial likelihood ap-
proach (Vella 1992). Note that the conditional
expectations of y, and y, in (4) given v, and
d, together with the lagged y, are given by

E(yzl: |Yi 1t’d1t)

Pd Pd Pd
=bi B yll‘1+ +B yl!p+’YP it

(6a)

E(ytl |yl/’y’ o vtt’ut[:’d )
=bT +B12yzt +BTIth 1+ +vayll -p (6b)
+bl L, +...+b] L

oLy V1V +6u

where yi'={y, LY 0 s b TP =/ O, Tr
=¢p/0,, 0=B,A,) and 0, =c'cotes'ertef
In other words, we can obtain consistent esti-
mates of the parameters of equation (4a), free
of selectivity bias, by running separate regres-
sions for d=0 and d=1 when including v, as
an additional regressor. Also, we can avoid
the endogeneity problem of y, and L, for the
regression (4b), if we include v, and u; as
additional regressors. Of course v, and u) are
unobservable, but they can be estimated. First,
we estimate 6 from the selection equation
(2) by maximizing the Tobit likelihood. Then
we obtain G[IZL[,*WI.’*“Q. Next, we run the
OLS regression of y, on y/~' and ¥, and
then compute:

ﬁz}'::y _bpd_BPIyrtl 7)

n

yp Yi,l—p - 'vait

Finally, we run the OLS regression of
y,ony,,y~", v, and u). The resulting es-
timates of bf , b[T B’;Jd , BLTj and bfj are all
consistent (Rivers and Vuong 1998).

4. Our Test Hypotheses for the F Test

The estimation procedure in the previous
section can be used for testing the selectivity
bias as well as the endogeneity of y, and L,.
We can test the selectivity bias in (6a) by
testing a hypothesis that each component of
7r equal zero. Also the endogeneity of y,
and L, in (6b) can be tested by testing hy-
potheses 0 =0 and 77 =

As an example, we focus on testing the
sample selectivity bias. If the components of
7, are tested separately, then we can use the
usual t test as suggested by Vella (1992).
However, our interest is whether or not sam-
ple selection bias presents in the system of
multiple equations. Hence our test would be
the F test. We can think of three null hy-
potheses for our interest.

Hy:yp=0 (8a)
Hy:y, =0 (8b)
Hy:y=0 (8c)

where 7=[7".7'].
three policy variables: fiscal deficits, a change

Our VAR analysis uses

in domestic credit, and a change in exchange
rate. Each policy equation has two regimes:
in-program and out-program. This means that

=0 has 6 linear restrictions on the regres-
sion coefficients across the six different policy
equations in (6a). Our VAR analysis also uses
three target variables: output growth, inflation
rate, and the balance of payments. This means
that 77
coefficients across the three different target

=0 has 3 restrictions on the regression
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equations in (6b). Putting 7, =0 and 77=0
together, ¥ =0 has 9 restrictions.

5. Theoretical Review for the F Test

This section provides theoretical basic
knowledge for the F test in the framework of
linear multiple regression equations. In the
connection with (6) and (8), we consider the
reduced form of multiple equations. We sup-
pose that there are m dependent variables in-
dexed by j and there are T observations on
cach dependent variable. Let y, denote the
vector of T observations on the j-th dependent
variable, X y denote the T kj matrix of obser-
vations on regressors in the j-th equation, /3 ;
denote the k;-vector of regression coefficients
in the j-th equation, and u, denote the 7-
vector of error terms for the j-th equation.
The j-th equation in the system of multiple

linear regression equations can be written as
y;=X;B;+u; ©))

By making appropriate definition, we can
write the entire system of m linear equations

as
yo=X.p. +u, (10)

where y. is the mT-vector consisting of the T-
vector y, through y = stacked vertically, u. is
similarly the vector of u, through u  stacked
vertically. The matrix X. is a m7T*xK block-
diagonal matrix, where K is equal to Z’;’:ij
If m=3, then the system looks

N X, O O|p Uy
Y. |=1 0 X, O | B |+]|u, (11)
V3 0 0 X;|5 U3
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where each of the O blocks has T rows and
as many columns as the X ; block that it
shares those columns with. To be conformable
with X,, the vector B. is a K-vector consist-
ing of the vector (3, through (3, . By making
some assumptions on the error terms, the
variance-covariance matrix of the error vector

u, is written as

_E(ulu{) E(uyuy) E(uu,,)
E(u,u) E(u,u) E(uu’
Euu’)= ( 2 1) ( 2 2) ( 2”m)
| E(u,uy) E(uyuy,) E(u,u,,)
oyl opl o gy,l
oyl opl o oy,l
ol o,,l fom |
_0'11 O Olm
Oy Oy <+ O
=" TP . el =xel =z,
1Oml Om2 " Omm (12)
where
On % ' O
pe| 7 om T O
Gml O-m2 O-mm

Note that X is a symmetric m>m matrix and
2.=2®1 is a mT>*mT matrix. By making
the assumption of normality for the error vec-
tor u., the whole system can be written as

yo=X.B. +u, (13a)

u, ~N@O,EQ1T ) (13b)

Now we consider a set of J linear restric-

tions on the form

Hy:RB, =c (14)



where R is a matrix of know constants, and
¢ is a vector of know constants. The linear
equation R B, =c is used to specify any linear
restrictions on the regression coefficients.
Textbooks such as Greene (2000, p620) show
the following F test statistic for testing the
null hypothesis.

(RA. o/ RX,(Z®1 ) "X, 'RT'(RA —¢)

F= ~F(J,mT-K)

J
wn(E®1) 4,
mT-K (15)

Note that (X.'(Z®1) ~'X.) ~'=Var(B,). Using
a consistent estimate X, the F test statistic re-
duces to

F =2 (R4, - arRA)T ' (RA, ~o)~FUmT - K) (16)

Because the above F test statistic uses the es-
timated X, the F distribution is only asymp-
totically valid.

For our panel VAR analysis, the stacked
B, consists of 822 regression coefficients, and
hence the dimension of I}ar( B,) is 822x822.
This means that we need to write computer
codes to calculate each element of the sym-
metric matrix in 822 %822, and hence the
number of the elements to be computed is
822 (822+1)/2=338, 253. Moreover, it is just
a small part of the whole task of executing
the F test. Nobody wants to write computer
codes for such huge and tedious work.

Another problem is related to the matrix
S @1 if we use it. We have m=10 including
the selection equation for our panel VAR
analysis. If we use a data set of 2000 obser-
vations and m=10, then the dimension of
SOOI is 20,000%20,000. No body wants to
deal with such a huge matrix for executing
the F test. We need to consider the capacity

limit of statistical software or computer in

order to invert the matrix of size in 20,000%
20,000.

It is clear that we are facing to the prob-
lems of dealing with huge matrices. There
should be a way to avoid these problems. The
next section provides an idea of practical way
of executing the F test so that we don't need
to deal with huge matrices.

6. A Practical Way of Executing the F Test

This section shows how to apply the previ-
ous basic knowledge to the standard model
specification that is similar to equation (6). It
also provides theoretical explanation of our
practical way of executing the F test. We
consider again the stacked from in (13).

Ye=X.B, +u,

u, ~NO,EZ®T )

First we make a partition of B. as [ B, 7]
where 7 denotes the part of our interest or
the part for testing, and B denotes the rest of
B.. The stacked X. is also partitioned as [X,
7] so that it is conformable with [B,7]. In
the connection with equation (6) and H,:v =
0, cach of the m equations is assumed to
have one 7,. Then equation (13a) can be
written as

yo=XB+Zr+u, (17)
If m=3, then it looks

N X, 0 0|p Z, 0O O|n U

21510 X, OB |+|O0 Zy, Oy, |+|u,
V3 0 0 X445 0 0 Z;7, Us
(18)

Notice that Z; can be interpreted as the vector
of v, in equation (6). The system (17) has the
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following dimensions.

mT x1 vs.
(mT x K" )K" x 1)+ (mT x m)(m x1) + (mT x1)

where K'= 2 k;, and k; is the number of co-
efficients for X in the j-th equation.
Let 0, be the (i,j) element of the variance-

covariance matrix X, and o7 be the (i,j) ele-

ment of the inverse matrix X~ '. Then, the
variance-covariance matrix of B, is given by
o ' -1 -1
Var(B,)z[X, (= ®I)X,]
-1
O'HX.l‘X.l 0_12X.1|X.2 01"'X,1'X.,,,
12 ' 22 ' 2m 1
Var(f,)= o X,2 X, o X,2 X.,, o Xt2 X,
lmX-m X- ‘mxnm'XQ O-mmXOva-m
(19)
The estimator of 7, which is a part of B_,
is given by
P =[ZMyZ 1'ZM, y, (20)

where M y=I—X(X'X) 'X'. Hence we have
-7 =[ZMyZ 1'Z'Myu, 1)

The variance-covariance matrix of 7 is given
by

Var(#) = E[Z-7)3-7)1= EIZM 4 Z]"'

(Z'M yuulZM ,)[Z'M ,Z] "]
=[ZMZ]'ZM ,EQIIM ,[ZM ,Z]"
-1

"2, MZ, 0"L,'M\Z, - c"Z'M,Z,
12 ' 22 ' 2m '
var(3)= © ZZ'MXZ] "L MyL, o 2, ML,
c"Z,'MZ, ¢""L,'MyZ, - c"™L,'M L,
(22)
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We define the following terms.

My, =¥ ,=residuals of y, regressedon
X; for the j-th equation.

M,Z, = Zj =residuals of Z; regressed on
X for the j-th equation.

Using the technique of residual regressions,
7A’j can be obtained from the regression of y,
on Z; .Using Z notation, the (j,k) element of
Var(7) !

is given by
Cix :a”‘Z/.'Zk (23)

The matrix Var(7) is now written as

-1

i Cim
. c c c
Var(3) = ?1 2 2m
o 24
cml cm2 o cmm ( )

This matrix is estimated as I}ar(%) using the
The F test statistic for H,:
7 =0 is given by

estimate of 0¥.

F= %f’[lfar(%)]‘l% ~F(J,ny) (25)

where J=m is the number of restrictions, n,=
mT—K, mT is the number of observations on
m endogenous variables, and K is the number
of all regression coefficients including 7; in
the whole system.

Notice the following points. In the course
of computing the F test statistic, we don't use
huge elements such as B and Var(ﬁ) The
elements we use are 7 and Var(?). The di-
is 10 and Var (7) is 10x10 if
J=m=10, while the dimension of B is 822

and I}ar(B.) is 822x822 in our example case.

mension of 7



So far we assume that each equation has
J=m.
Our idea can be extended to other cases as

one 7, in H,:7 =0 so that we have

well. The important point is that we need to
stack the coefficients (7;) of our interest ver-
tically as shown in (18). Then B, denotes all
other coefficients in the equation and (X, Z)
is defined accordingly. Then we use the tech-
nique of residual regressions so that we can
estimate 7; for j=1,2,...,J and get I}ar(‘):)fl.
The rest is basically the same as above. Even
J becomes larger than m, it would be still
much smaller than K, which is the dimension
of the whole coefficient vector B..

7. Computational Aspects of the F Test for
Sample Selection Bias

The null hypothesis in (8c) has 9 restric-
tions for testing the presence of sample selec-
tion bias in the whole system of multiple
equations. Thus, we consider the case of J=9
in order to explain computational aspects. We
make the following stacked from.

I X; 0. 0B 4 a1
Yol 0 X, 0]p, RN I s
: S ; P o@o)

Yo 0 0 X, B Vo Ug
where the first through sixth equations repre-
sent the three policy equations under two re-
gimes d=0 and d=1, and the seventh through
ninth equations represent the three target
equations. Note that Bj denotes for all regres-
sion coefficients expect 7; in the j-th equa-
tion, and X is defined accordingly. Note also
that the selection equation (2) does not appear
in the above stacked form since it does not
have a coefficient for the test. Of course all
of the equations including (2) are used when
we compute i

The above stacked from is written as

Vo =Xp+Vr+u, 27

Since our data set is a panel data set of many
countries with annual frequency, we let N be
the number of countries, 7 be the number of
time periods, mNT be the number of observa-
tions on m dependent variables. Then the
stacked y. has the dimension of mNTXx1.
Next we show the computational steps of
the F statistic. As the first step, we obtain all
regression residuals in the following order.
We run the selection equation (2) first and
obtain its residual v,. Following equation (6),
we run the policy equation with v;, and then
we obtain #}. We run the target equation
with v, and #£, obtaining #;. In this way we
can get all regression residuals. The second
step is to obtain the estimated variance-

covariance matrix of error terms as follows.

NT

A 1 N
O-jk :quﬂuld (28)

=1
E=(6y) (29)

where v; is denoted as u, and equation (29)
means that X consists of 7, for jA,k:l,2,3,. e
10. The third step is to invert X and obtain
6% in E7N.

The forth step is the time to consider the
stack form (26) for the technique of residual
regressions. Here we regress y, on X includ-
ing the country dummies but excluding v, and
obtain its residuals )7/ for j=1,2,....,9. We
also regress v on X, including the country
dummies, and obtain its residual v, for j=1,

2,...,9. The fifth step is to compute

. AT
Gy =675, 5,=6"% Y 5,5, for jk=12,9.(30)

t=1
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The sixth step is to form I}ar(f’) from ¢;'s.

-1

é11 é12 é19

A Cy Gy o+ C

Var(p)=| 7 T ? (€2)
é91 é92 é99

The seventh step is to compute the value of
the F test statistic.

F:}?’[V‘armm (32)

This F test statistic is asymptotically distrib-
uted as F(J,my), where no,=mNT—K, mNT is
the number of observations on m endogenous
variables, and K is the number of regression
coefficients including 7;'s in the whole sys-

tem of multiple linear equations.

8. Test Results of Sample Selection Bias

Our data set is an unbalanced panel data
set with 79 countries over 28 years of time
periods form 1976 to 2003. If it were a bal-
anced panel data set, then the number of ob-
servations would be 79x28=2,212. For our
unbalanced panel data set, we can say that
each country has observations somewhere be-
tween 10 years and 24 years for estimations.
The deduction in the maximum time length
from 28 years to 24 years is due to the use
of lags for our panel VAR analysis.

With regard to testing the sample selectivity
bias in our panel VAR analysis, 7 =0 has 6
restrictions, 77 =0 has 3 restrictions, and 7 =
[7%,7%] has 9 restrictions. Counting regres-
sion coefficients and so on, #,=8,787 is used
with K=822. The following table reports the
results of the F tests.

Table 1: Tests for Sample Selectivity

Null hypothesis (H,) F-value 5% critical p-value
value
¥,=0 10.68 2.10 0.00000
Y, =0 0.49 2.61 0.69
v=0 7.21 1.88 0.00000

The test results suggest that the sample se-
lection bias appears quite serious in our panel
VAR analysis for evaluating the effectiveness
of the IMF lending programs.

9. Conclusions

If we make the straight forward application
of textbook knowledge to the F test in the
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framework of multiple linear regression equa-
tions, we probably face to the problems of
dealing with huge matrices. Even though it
depends on the numbers of regression coeffi-
cients and so on, the problems become seri-
ous enough to think about another way of
performing the test. For example, if the num-
ber of regression coefficients is 822, then we



need to write computer codes to specify the
elements in a symmetric matrix in 822x822,
and the number of the elements to be com-
puted is 822 (822+1)/2=338,253. It is just a
small part of the whole task of executing the
F test. Nobody wants to write computer codes
for such huge and tedious work. Also, we
might face to the capacity limitation of statis-
tical software or computer due to the use of
huge matrices.

This paper shows a practical way of exe-
cuting the F test in the framework of multiple
linear regression equations by using the tech-
nique of residual regressions. In this way we
don't face to the problems of dealing with
huge metrics. Our example shows that the F
test can be carried out using a symmetric ma-
trix in 10x10 rather than 822x822.

Even though we focus on the F test, the
idea illustrated in this paper can be applied to
other tests as well without any difficulties.

(Received : November 26, 2009, Accepted : January 13, 2010)
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